
                                          UNIT-4 

Syllabus:- Principal components analysis (PCA), Locally Linear 
Embedding (LLE), Factor Analysis 

 

Principal Component Analysis 
 

*Principal Component Analysis is an unsupervised learning algorithm that is 

used for the dimensionality reduction in machine learning. 

*It is one of the popular tools that is used for exploratory data analysis and 

predictive modelling. 

*It is a technique to draw strong patterns from the given dataset by reducing 

the variances 

*PCA generally tries to find the lower-dimensional surface to project the high-

dimensional data. 

*Some real-world applications of PCA are image processing, movie 

recommendation system, optimizing the power allocation in various 

communication channels. 

Principal Component Analysis is a technique used to: 

• Reduce the dimensionality of the data set 

• Identify new meaningful underlying variables 

• Loose minimum information 

by finding the directions in which a cloud of data 

points is stretched most. 

* 

 

https://www.javatpoint.com/machine-learning


 

Some common terms used in PCA algorithm: 

o Dimensionality: It is the number of features or variables present in the 

given dataset. More easily, it is the number of columns present in the 

dataset. 

o Correlation: It signifies that how strongly two variables are related to each 

other. Such as if one changes, the other variable also gets changed. The 

correlation value ranges from -1 to +1. Here, -1 occurs if variables are 

inversely proportional to each other, and +1 indicates that variables are 

directly proportional to each other. 

o Orthogonal: It defines that variables are not correlated to each other, and 

hence the correlation between the pair of variables is zero. 

o Eigenvectors: If there is a square matrix M, and a non-zero vector v is 

given. Then v will be eigenvector if Av is the scalar multiple of v. 

o Covariance Matrix: A matrix containing the covariance between the pair 

of variables is called the Covariance Matrix 

Steps for PCA algorithm 

 

1.Getting the dataset:- 

 Firstly, we need to take the input dataset and divide it into two subparts X and 

Y, where X is the training set, and Y is the validation set. 



 

 

2. Representing data into a structure:- 

 Now we will represent our dataset into a structure. Such as we will represent 

the two-dimensional matrix of independent variable X. Here each row 

corresponds to the data items, and the column corresponds to the Features. 

The number of columns is the dimensions of the dataset. 

3. Standardizing the data:- 

 In this step, we will standardize our dataset. Such as in a particular column, the 

features with high variance are more important compared to the features with 

lower variance. 

If the importance of features is independent of the variance of the feature, 

then we will divide each data item in a column with the standard deviation of 

the column. Here we will name the matrix as Z. 

4. Calculating the Covariance of Z:-  

To calculate the covariance of Z, we will take the matrix Z, and will transpose it. 

After transpose, we will multiply it by Z. The output matrix will be the 

Covariance matrix of Z 

5. Calculating the Eigen Values and Eigen Vectors:- 

 Now we need to calculate the eigenvalues and eigenvectors for the resultant 

covariance matrix Z. Eigenvectors or the covariance matrix are the directions of 

the axes with high information. And the coefficients of these eigenvectors are 

defined as the eigenvalues. 

6. Sorting the Eigen Vectors:- 

In this step, we will take all the eigenvalues and will sort them in decreasing 

order, which means from largest to smallest. And simultaneously sort the 

eigenvectors accordingly in matrix P of eigenvalues. The resultant matrix will 

be named as P*. 

7. Calculating the new features Or Principal Components:- 



Here we will calculate the new features. To do this, we will multiply the P* 

matrix to the Z. In the resultant matrix Z*, each observation is the linear 

combination of original features. Each column of the Z* matrix is independent 

of each other. 

8. Remove less or unimportant features from the new dataset.:- 

The new feature set has occurred, so we will decide here what to keep and 

what to remove. It means, we will only keep the relevant or important features 

in the new dataset, and unimportant features will be removed out. 

 

Applications of Principal Component Analysis 

o PCA is mainly used as the dimensionality reduction technique in various 

AI applications such as computer vision, image compression, etc. 

o It can also be used for finding hidden patterns if data has high dimensions. 

Some fields where PCA is used are Finance, data mining, Psychology, etc. 

Locally Linear Embedding 
(LLE)  
 

 

Locally Linear Embedding (LLE) is a method of Non Linear 

Dimensionality reduction proposed by Sam T. Roweis and Lawrence K. 

Saul in 2000 in their paper titled “Nonlinear Dimensionality Reduction 
by Locally Linear Embedding”. This article is based on multiple sources 

mentioned in the references section. The project by Jennifer Chu helped 
me understand LLE better. 

 

* Machine Learning algorithms use the features they are trained on to 

predict the output. For example, in the case of a house price prediction 

problem, there might be a number of features like the size of the house, 
number of bedrooms, number of bathrooms, etc. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.5279&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.5279&rep=rep1&type=pdf
http://www.math.sjsu.edu/~gchen/Math285F15/285%20Final%20Project%20-%20LLE.pdf


* One major problem many machine learning algorithms face while doing 

this is that of overfitting, where the model fits the training data so well 
that it is unable to predict the real life test data accurately. This is a 

problem since it makes the algorithm very effective. 

 

 

Locally Linear Embedding (LLE) 

Data sets can often be represented in a n-Dimensional feature space, with 

each dimension used for a specific feature. 

The LLE algorithm is an unsupervised method for dimensionality 

reduction. It tries to reduce these n-Dimensions while trying to preserve 

the geometric features of the original non-linear feature structure. For 

example, in the below illustration, we cast the structure of the swiss roll 

into a lower dimensional plane, while maintaining its geometric structure. 

https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/


In short, if we have D dimensions for data X1, we try to reduce X1 to X2 in 

a feature space with d dimensions. 
 

 

                                           

 

How does Locally Linear Embedding works. 
 

The high-level steps 

Similar to Isomap, LLE combines several steps to produce the lower-

dimensional embedding. These are: 

1. Use a KNN approach to find the k nearest neighbors of every data 

point. Here, “k” is an arbitrary number of neighbors that you can specify 

within model hyperparameters. 

2. Construct a weight matrix where every point has its weights 

determined by minimizing the error of the cost function shown below. 

Note that every point is a linear combination of its neighbors, which 

means that weights for non-neighbors are 0. 
 

 

 

 

 

 



 



3. Find the positions of all the points in the new lower-dimensional 

embedding by minimizing the cost function shown below. Note, here we 
use weights (W) from step two and solve for Y. The actual solving is 

performed using Partial Eigenvalue Decomposition. 

 



 



With the above steps completed, we get a lower-dimensional 

representation of the data, which we can typically visualize using standard 

scatterplots, provided we reduce the dimensionality to 3D or less. 

LLE variants 

You should be aware of a few LLE variants, which improve upon the 

original setup. However, note that these improvements come at the cost of 

efficiency, making the algorithm slower. Here is how scikit-

learn describes these variants: 

 Modified LLE (MLLE) — One well-known issue with LLE is 

the regularization problem. A way to address it is to 

use multiple weight vectors in each neighborhood. This is the 

essence of MLLE. 

 Hessian LLE (HLLE)— Hessian Eigenmapping is another 

method of solving the regularization problem of LLE. It revolves 

around a hessian-based quadratic form at each 

neighborhood used to recover the locally linear structure. 

While I will not go into details, I recommend you experiment with them to 

see which variant yields the best results for your data. Personally, I find 

MLLE to perform well in most scenarios (see an example of this in the 

next section). 
 

Difference between LLE and Isomap 

The two algorithms are similar in the way they approach dimensionality 

reduction, but they do have their differences. 

https://scikit-learn.org/stable/modules/manifold.html#modified-locally-linear-embedding
https://scikit-learn.org/stable/modules/manifold.html#modified-locally-linear-embedding


Similar to LLE, Isomap also uses KNN to find the nearest neighbors in the 

first step. However, the second step constructs neighborhood graphs 

instead of describing each point as a linear combination of its neighbors. 

Then it uses these graphs to compute the shortest path between every pair 

of points. 

Finally, Isomap uses those pairwise distances between all points to 

construct a lower-dimensional embedding. 

Factor Analysis  

Factor Analysis in Machine Learning 

1.Reduce a large number of variables into fewer numbers of factors. 

2.Puts maximum common variance into a common score. 

3.Associate multiple  observed variables with a latent variable. 

4.Has the same number of factor’s and variables, where each factor 

certain amount of overall variance. 

Eigenvalue:- A measure of the variance that a factor explains for 

observed variables. A factor with eigenvalue less than one variance 

than a single observed value. 

 



Factor Analysis Process :- 
 

1. Principal Analysis Component (PCA) 

Extract the hidden factor from the dataset. 

Defines data using less numbers of components,explaining the 

variance in your data 

Reduce the computation complexity . 

Determine that the new data is the part of the group of data points 

from the training set. 

 

2.  Linear Dimensions Analysis(LDA) :- 

 

Reduces dimensions. 
Search the linear combination of variables that best 

separates two class. 

Reduce degree of overfitting. 

Determine how to classify the new observation out of 
oup of classes. 

 

 



Direction of Maximum Variance: - 

1. PCA seeks the linear combination of variables in 

order to extract the maximum variance. 

2.2. Compute Eigenvector that are principal 

components of the dataset and collect them in 

projection matrix. 

3.3. Each of the Eigenvector is associate with 

Eigenvalue, which is magnitudes. 

4.4. Reduce the dataset into smaller dimensional 

subspace by dropping the less informative 

Eigenpairs. 

Plafond’s line depending on two criteria:- 

1. The variation of values should be maximal along 

this line. 

2. The error should be minimum if you don't 

reconstruct original two positions of a blue dot from 

the new position of the red dot. 

First Principle Component: - 

 



 

The first principle component (PCI) is the direction of 

the maximum variance and is obtained by solving 

Eigenvector. 

Finding PCl :- 

PCl (Mathematically) : alxl + a2x2 + a3x3 

+………………………………..+anxn 

Constraint: a1A2 + a2A2 + a3A2 + 

…………………………………….+akA2 

Eigen decomposition to solve the equation. 

NOTE : - Eigen decomposition is the factorisation of the 

matrix into a canonical form, where the matrix is 

represented in terms of Eigenvectors or Eigenvalues. 

Eigenvalues and PCA. :- 

Eigenvalues are the variances of the principal 

component arranged in descending order. 



Summary of PCA Process : 

1. Standardize the data PCA : Requires that the input 

variables have similar scales of the measurement. 

2. Build the correlation matrix : This summarizes how 

your variables all relate to one another. 

3. Obtain the Eigenvalue and Eigenvector from 

correlation matrix : Break the matrix down in 

direction and magnitude . Sort Eigenvalues in 

descending order and choose Eigenvectors that 

corresponds to the largest Eigenvalue. 

4. Construct the projection matrix from selected 

Eigenvector : Reduce the dataset by dropping less 

informative Eigenpairs. 

5. Transform the original dataset to obtain a kk- 

dimensional feature sub space : Compress your data 

into smaller space by excluding less important 

directions. 
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