
 Version Control System

A version control system is software that tracks changes to a file or set of files over time so that

you can recall specific versions later. It also allows you to work together with other

programmers.

The version control system is a collection of software tools that help a team to manage changes

in a source code. It uses a special kind of database to keep track of every modification to the

code.

Developers can compare earlier versions of the code with an older version to fix the mistakes.

Benefits of the Version Control System

The Version Control System is very helpful and beneficial in software development; developing

software without using version control is unsafe. It provides backups for uncertainty. Version

control systems offer a speedy interface to developers. It also allows software teams to preserve

efficiency and agility according to the team scales to include more developers.

Types of Version Control System

o Localized version Control System

o Centralized version control systems

o Distributed version control systems

What is Git?

Git is an open-source distributed version control system. It is designed to handle minor to major

projects with high speed and efficiency. It is developed to co-ordinate the work among the

developers. The version control allows us to track and work together with our team members at

the same workspace.

o OpenSource

Git is an open-source tool. It is released under the GPL (General Public License) license.

o Scalable

Git is scalable, which means when the number of users increases, the Git can easily

handle such situations.

o Distributed

One of Git's great features is that it is distributed. Distributed means that instead of

switching the project to another machine, we can create a "clone" of the entire repository.

Also, instead of just having one central repository that you send changes to, every user

has their own repository that contains the entire commit history of the project. We do not

need to connect to the remote repository; the change is just stored on our local repository.

If necessary, we can push these changes to a remote repository.

o security

Git is secure. It uses the SHA1 (Secure Hash Function) to name and identify objects

within its repository. Files and commits are checked and retrieved by its checksum at the

time of checkout. It stores its history in such a way that the ID of particular commits

depends upon the complete development history leading up to that commit. Once it is

published, one cannot make changes to its old version.

o Speed

Git is very fast, so it can complete all the tasks in a while. Most of the git operations are

done on the local repository, so it provides a huge speed. Also, a centralized version

control system continually communicates with a server somewhere.

Performance tests conducted by Mozilla showed that it was extremely fast compared to

other VCSs. Fetching version history from a locally stored repository is much faster than

fetching it from the remote server. The core part of Git is written in C,

which ignores runtime overheads associated with other high-level languages.

Git was developed to work on the Linux kernel; therefore, it is capable enough to handle

large repositories effectively. From the beginning, speed and performance have been Git's

primary goals.

Git is used for:

 Tracking code changes

 Tracking who made changes

 Coding collaboration

What does Git do?

 Manage projects with Repositories

 Clone a project to work on a local copy

 Control and track changes with Staging and Committing

 Branch and Merge to allow for work on different parts and versions of a project

 Pull the latest version of the project to a local copy

 Push local updates to the main project

Working with Git

 Initialize Git on a folder, making it a Repository

 Git now creates a hidden folder to keep track of changes in that folder

 When a file is changed, added or deleted, it is considered modified

 You select the modified files you want to Stage

 The Staged files are Committed, which prompts Git to store a permanent snapshot of the

files

 Git allows you to see the full history of every commit.

 You can revert back to any previous commit.

 Git does not store a separate copy of every file in every commit, but keeps track of

changes made in each commit!

Why Git?

 Over 70% of developers use Git!

 Developers can work together from anywhere in the world.

 Developers can see the full history of the project.

 Developers can revert to earlier versions of a project.

What is GitHub?

 Git is not the same as GitHub.

 GitHub makes tools that use Git.

 GitHub is the largest host of source code in the world, and has been owned by Microsoft

since 2018.

Git Install

You can download Git for free from the following website: https://www.git-scm.com/

Using Git with Command Line

To start using Git, we are first going to open up our Command shell.

For Windows, you can use Git bash, which comes included in Git for Windows. For Mac and

Linux you can use the built-in terminal.

The first thing we need to do, is to check if Git is properly installed:

git --version

git version 2.30.2.windows.1

If Git is installed, it should show something like git version X.Y

https://git-scm.com/

Configure Git

Now let Git know who you are. This is important for version control systems, as each Git

commit uses this information

git config --global user.name "Jahir"

git config --global user.email "drjahirpasha@gpcet.ac.in"

Change the user name and e-mail address to your own. You will probably also want to use this

when registering to GitHub later on.

Creating Git Folder

Now, let's create a new folder for our project:

mkdir myproject

cd myproject

mkdir makes a new directory.

cd changes the current working directory.

Now that we are in the correct directory. We can start by initializing Git!

Initialize Git

Once you have navigated to the correct folder, you can initialize Git on that folder:

git init

Initialized empty Git repository in /Users/user/myproject/.git/

Git New Files

Git Adding New Files

You just created your first local Git repo. But it is empty.

So let's add some files, or create a new file using your favourite text editor. Then save or move it

to the folder you just created

for this example, I am going to use a simple HTML file like this:

Example

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git Repo.</p>

</body>

</html>

And save it to our new folder as index.html.

Let's go back to the terminal and list the files in our current working directory:

ls

index.html

ls will list the files in the directory. We can see that index.html is there.

Then we check the Git status and see if it is a part of our repo:

git status

On branch master

No commits yet

Untracked files:

 (use "git add ..." to include in what will be committed) index.html nothing added to commit

but untracked files present (use "git add" to track)

Now Git is aware of the file, but has not added it to our repository!

Files in your Git repository folder can be in one of 2 states:

 Tracked - files that Git knows about and are added to the repository

 Untracked - files that are in your working directory, but not added to the repository

 When you first add files to an empty repository, they are all untracked. To get Git to track them,

you need to stage them, or add them to the staging environment.

Git Staging Environment

One of the core functions of Git is the concepts of the Staging Environment, and the Commit.

As you are working, you may be adding, editing and removing files. But whenever you hit a

milestone or finish a part of the work, you should add the files to a Staging Environment.

Staged files are files that are ready to be committed to the repository you are working on. You

will learn more about commit shortly.

For now, we are done working with index.html. So we can add it to the Staging Environment:

git add index.html

The file should be Staged. Let's check the status:

git status

On branch master

No commits yet

Changes to be committed:

 (use "git rm --cached ..." to unstage) new file: index.html

Now the file has been added to the Staging Environment.

Git Add More than One File

You can also stage more than one file at a time. Let's add 2 more files to our working folder. Use

the text editor again.

A README.md file that describes the repository (recommended for all repositories):

Example

hello-world

Hello World repository for Git tutorial

This is an example repository for the Git tutorial.

A basic external style sheet (bluestyle.css):

Example

body {

background-color: lightblue;

}

h1 {

color: navy;

margin-left: 20px;

}

And update index.html to include the stylesheet:

Example

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git Repo.</p>

</body>

</html>

Now add all files in the current directory to the Staging Environment:

Example

git add --all

Using --all instead of individual filenames will stage all changes (new, modified, and deleted)

files.

Example

git status

On branch master

No commits yet

Changes to be committed:

 (use "git rm --cached ..." to unstage)

 new file: README.md

 new file: bluestyle.css

 new file: index.html

Now all 3 files are added to the Staging Environment, and we are ready to do our first commit.

Note: The shorthand command for git add --all is git add -A

Git Commit

Since we have finished our work, we are ready move from stage to commit for our repo.

Adding commits keep track of our progress and changes as we work. Git considers

each commit change point or "save point". It is a point in the project you can go back to if you

find a bug, or want to make a change.

When we commit, we should always include a message.

By adding clear messages to each commit, it is easy for yourself (and others) to see what has

changed and when.

Example

git commit -m "First release of Hello World!"

[master (root-commit) 221ec6e] First release of Hello World!

 3 files changed, 26 insertions(+)

 create mode 100644 README.md

 create mode 100644 bluestyle.css

 create mode 100644 index.html

The commit command performs a commit, and the -m "message" adds a message.

The Staging Environment has been committed to our repo, with the message:

"First release of Hello World!"

Git Commit without Stage

Sometimes, when you make small changes, using the staging environment seems like a waste of

time. It is possible to commit changes directly, skipping the staging environment. The -a option

will automatically stage every changed, already tracked file.

Let's add a small update to index.html:

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<p>This is the first file in my new Git Repo.</p>

<p>A new line in our file!</p>

</body>

</html>

And check the status of our repository. But this time, we will use the --short option to see the

changes in a more compact way:

Example

git status --short

 M index.html

Working with Git Branches

In Git, a branch is a new/separate version of the main repository.

Let's say you have a large project, and you need to update the design on it.

How would that work without and with Git:

Without Git:

 Make copies of all the relevant files to avoid impacting the live version

 Start working with the design and find that code depend on code in other files, that also

need to be changed!

 Make copies of the dependant files as well. Making sure that every file dependency

references the correct file name

 EMERGENCY! There is an unrelated error somewhere else in the project that needs to

be fixed ASAP!

 Save all your files, making a note of the names of the copies you were working on

 Work on the unrelated error and update the code to fix it

 Go back to the design, and finish the work there

 Copy the code or rename the files, so the updated design is on the live version

 (2 weeks later, you realize that the unrelated error was not fixed in the new design

version because you copied the files before the fix)

With Git:

 With a new branch called new-design, edit the code directly without impacting the main

branch

 EMERGENCY! There is an unrelated error somewhere else in the project that needs to

be fixed ASAP!

 Create a new branch from the main project called small-error-fix

 Fix the unrelated error and merge the small-error-fix branch with the main branch

 You go back to the new-design branch, and finish the work there

 Merge the new-design branch with main (getting alerted to the small error fix that you

were missing)

Branches allow you to work on different parts of a project without impacting the main branch.

When the work is complete, a branch can be merged with the main project.

You can even switch between branches and work on different projects without them interfering

with each other.

Branching in Git is very lightweight and fast!

New Git Branch

Let add some new features to our index.html page.

We are working in our local repository, and we do not want to disturb or possibly wreck the

main project.

So we create a new branch:

Example

git branch hello-world-images

Now we created a new branch called "hello-world-images"

Let's confirm that we have created a new branch:

Example

git branch

 hello-world-images

* master

We can see the new branch with the name "hello-world-images", but

the * beside master specifies that we are currently on that branch.

checkout is the command used to check out a branch. Moving us from the current branch, to the

one specified at the end of the command:

Example

git checkout hello-world-images

Switched to branch 'hello-world-images'

Now we have moved our current workspace from the master branch, to the new branch

Open your favourite editor and make some changes.

For this example, we added an image (img_hello_world.jpg) to the working folder and a line of

code in the index.html file:

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<div><img src="img_hello_world.jpg" alt="Hello World from Space"

style="width:100%;max-width:960px"></div>

<p>This is the first file in my new Git Repo.</p>

<p>A new line in our file!</p>

</body>

</html>

We have made changes to a file and added a new file in the working directory (same directory as

the main branch).

Now check the status of the current branch:

Example

git status

On branch hello-world-images

Changes not staged for commit:

 (use "git add ..." to update what will be committed)

 (use "git restore ..." to discard changes in working directory)

 modified: index.html

Untracked files:

 (use "git add ..." to include in what will be committed)

 img_hello_world.jpg

no changes added to commit (use "git add" and/or "git commit -a")

So let's go through what happens here:

 There are changes to our index.html, but the file is not staged for commit

 img_hello_world.jpg is not tracked

So we need to add both files to the Staging Environment for this branch:

Example

git add --all

Using --all instead of individual filenames will Stage all changed (new, modified, and deleted)

files.

Check the status of the branch:

Example

git status

On branch hello-world-images

Changes to be committed:

 (use "git restore --staged ..." to unstage)

 new file: img_hello_world.jpg

 modified: index.html

We are happy with our changes. So we will commit them to the branch:

Example

git commit -m "Added image to Hello World"

[hello-world-images 0312c55] Added image to Hello World

2 files changed, 1 insertion(+)

create mode 100644 img_hello_world.jpg

Now we have a new branch, that is different from the master branch.

Switching Between Branches

Now let's see just how quick and easy it is to work with different branches, and how well it

works.

We are currently on the branch hello-world-images. We added an image to this branch, so let's

list the files in the current directory:

Example

ls

README.md bluestyle.css img_hello_world.jpg index.html

We can see the new file img_hello_world.jpg, and if we open the html file, we can see the code

has been altered. All is as it should be.

Now, let's see what happens when we change branch to master

Example

git checkout master

Switched to branch 'master'

The new image is not a part of this branch. List the files in the current directory again:

Example

ls

README.md bluestyle.css index.html

img_hello_world.jpg is no longer there! And if we open the html file, we can see the code

reverted to what it was before the alteration.

Merge Branches

We have the emergency fix ready, and so let's merge the master and emergency-fix branches.

First, we need to change to the master branch:

Example

git checkout master

Switched to branch 'master'

Now we merge the current branch (master) with emergency-fix:

Example

git merge emergency-fix

Updating 09f4acd..dfa79db

Fast-forward

 index.html | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

Since the emergency-fix branch came directly from master, and no other changes had been made

to master while we were working, Git sees this as a continuation of master. So it can "Fast-

forward", just pointing both master and emergency-fix to the same commit.

As master and emergency-fix are essentially the same now, we can delete emergency-fix, as it is

no longer needed:

Example

git branch -d emergency-fix

Deleted branch emergency-fix (was dfa79db).

Merge Conflict

Now we can move over to hello-world-images and keep working. Add another image file

(img_hello_git.jpg) and change index.html, so it shows it:

Example

git checkout hello-world-images

Switched to branch 'hello-world-images'

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<div><img src="img_hello_world.jpg" alt="Hello World from Space" style="width:100%;max-

width:960px"></div>

<p>This is the first file in my new Git Repo.</p>

<p>A new line in our file!</p>

<div><img src="img_hello_git.jpg" alt="Hello Git" style="width:100%;max-

width:640px"></div>

</body>

</html>

Now, we are done with our work here and can stage and commit for this branch:

Example

git add --all

git commit -m "added new image"

[hello-world-images 1f1584e] added new image

 2 files changed, 1 insertion(+)

 create mode 100644 img_hello_git.jpg

We see that index.html has been changed in both branches. Now we are ready to merge hello-

world-images into master. But what will happen to the changes we recently made in master?

Example

git checkout master

git merge hello-world-images

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

The merge failed, as there is conflict between the versions for index.html. Let us check the

status:

Example

git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Changes to be committed:

 new file: img_hello_git.jpg

 new file: img_hello_world.jpg

Unmerged paths:

 (use "git add ..." to mark resolution)

 both modified: index.html

This confirms there is a conflict in index.html, but the image files are ready and staged to be

committed.

So we need to fix that conflict. Open the file in our editor:

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<div><img src="img_hello_world.jpg" alt="Hello World from Space" style="width:100%;max-

width:960px"></div>

<p>This is the first file in my new Git Repo.</p>

<<<<<<< HEAD

<p>This line is here to show how merging works.</p>

=======

<p>A new line in our file!</p>

<div><img src="img_hello_git.jpg" alt="Hello Git" style="width:100%;max-

width:640px"></div>

>>>>>>> hello-world-images

</body>

</html>

We can see the differences between the versions and edit it like we want:

Example

<!DOCTYPE html>

<html>

<head>

<title>Hello World!</title>

<link rel="stylesheet" href="bluestyle.css">

</head>

<body>

<h1>Hello world!</h1>

<div><img src="img_hello_world.jpg" alt="Hello World from Space" style="width:100%;max-

width:960px"></div>

<p>This is the first file in my new Git Repo.</p>

<p>This line is here to show how merging works.</p>

<div><img src="img_hello_git.jpg" alt="Hello Git" style="width:100%;max-

width:640px"></div>

</body>

</html>

Now we can stage index.html and check the status:

Example

git add index.html

git status

On branch master

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Changes to be committed:

 new file: img_hello_git.jpg

 new file: img_hello_world.jpg

 modified: index.html

The conflict has been fixed, and we can use commit to conclude the merge:

Example

git commit -m "merged with hello-world-images after fixing conflicts"

[master e0b6038] merged with hello-world-images after fixing conflicts

And delete the hello-world-images branch:

Example

git branch -d hello-world-images

Deleted branch hello-world-images (was 1f1584e).

	Version Control System
	Benefits of the Version Control System
	Types of Version Control System
	What is Git?
	What does Git do?
	Working with Git
	Why Git?
	What is GitHub?

	Git Install
	Using Git with Command Line
	Configure Git
	Creating Git Folder
	Initialize Git

	Git New Files
	Git Adding New Files
	Example <html> <head> <title>Hello World!</title> </head> <body> <h1>Hello world!</h1> <p>This is the first file in my new Git Repo.</p> </body> </html>

	Git Staging Environment
	Git Add More than One File
	Example
	Example (1)
	Example <html> <head> <title>Hello World!</title> <link rel="stylesheet" href="bluestyle.css"> </head> <body> <h1>Hello world!</h1> <p>This is the first file in my new Git Repo.</p> </body> </html>
	Example (2)
	Example (3)

	Git Commit
	Example

	Git Commit without Stage
	Example
	Example (1)

	Working with Git Branches
	New Git Branch
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)

	Switching Between Branches
	Example
	Example (1)
	Example (2)

	Merge Branches
	Example
	Example (1)
	Example (2)

	Merge Conflict
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)
	Example (8)
	Example (9)

