
In a programming context, a build is a version of a program that, as a rule, is a pre-release

version and is identified by a build number rather than by a release number.

Simply put, a software build is a set of executable code that is ready for use by customers. The

DevOps team compiles the source code, such as code in Java or C++, into binaries to make sure

it's functional and test code quality before committing it.

Software is updated regularly until the maker decides to discontinue supporting it. This may

entail a series of builds and many software releases to the public.

Iterative (repeated) builds, otherwise known as continuous integration, are an essential part of an

optimal development process where application components are collected and repeatedly

compiled for testing purposes to ensure a reliable final product.

Additionally, build tools enable developers to automate some programming tasks to further

streamline the process

For this exercise, we will create a job in Jenkins which picks up a simple HelloWorld

application, builds and runs the java program.

Step 1 − Go to the Jenkins dashboard and Click on New Item

https://searchsoftwarequality.techtarget.com/definition/program
https://www.techtarget.com/searchsecurity/definition/executable
https://www.techtarget.com/whatis/definition/code
https://www.theserverside.com/definition/Java
https://searchsqlserver.techtarget.com/definition/C
https://searchsoftwarequality.techtarget.com/definition/continuous-integration

Step 2 − In the next screen, enter the Item name, in this case we have named it Helloworld.

Choose the ‘Freestyle project option’

Step 3 − The following screen will come up in which you can specify the details of the job.

Step 4 − We need to specify the location of files which need to be built. In this example, we will

assume that a local git repository(E:\Program) has been setup which contains a

‘HelloWorld.java’ file. Hence scroll down and click on the Git option and enter the URL of the

local git repository.

Note − If you repository if hosted on Github, you can also enter the url of that repository here. In

addition to this, you would need to click on the Add button for the credentials to add a user name

and password to the github repository so that the code can be picked up from the remote

repository.

Step 5 − Now go to the Build section and click on Add build step → Execute Windows batch

command

Step 6 − In the command window, enter the following commands and then click on the Save

button.

Javac HelloWorld.java

Java HelloWorld

Step 7 − Once saved, you can click on the Build Now option to see if you have successfully

defined the job.

Step 8 − Once the build is scheduled, it will run. The following Build history section shows that

a build is in progress.

Step 9 − Once the build is completed, a status of the build will show if the build was successful

or not. In our case, the following build has been executed successfully. Click on the #1 in the

Build history to bring up the details of the build.

Step 10 − Click on the Console Output link to see the details of the build

Apart from the steps shown above there are just so many ways to create a build job, the options

available are many, which what makes Jenkins such a fantastic continuous deployment tool.

Jenkins, the heart of DevOps, is a continuous integration tool that allows developers to integrate

code into a shared repository at regular intervals. The usual practice is to trigger a build as soon

as the code is committed to the repository.

If you’re worried about Jenkins replacing Hudson, we can assure you that Hudson is still

available as a managed project by Oracle. In fact, Jenkins was forked from the Hudson source

code and later began to be supported by the open community.

The common process of Jenkins involves the following 3 steps:

 Developers make changes to the code and commit it to their repository

 Jenkins picks up the code and later runs builds and any tests that may be required

 As a post step, notifications can be triggered, logs can be checked, or any other cleaning

job can take place

Any event mapped above, is taken care of by a Jenkins job. A Jenkins job is simply a process

that runs on Jenkins server to provide the above mentioned functionality.

If you’re new to Jenkins, we’re going to help you understand the basics of the Jenkins pipeline,

along with the functionality aspect of Jenkins.

What is Jenkins Pipeline?

Jenkins pipeline allows us to define a complete list of events that happen in the code lifecycle.

Starting from the build, to testing and deployment.

We can use a set of plugins that help in the implementation of certain processes as a continuous

delivery pipeline. Where pipelines are defined using code by using groovy language to define the

processes that would run in the pipeline.

To implement pipeline as code, a Jenkins file needs to be present at the project’s root repository.

Jenkins file supports two different syntax:

 Declarative

 Scripted

Declarative pipeline was a recent release and provides better syntax support over the scripted

pipelines.

Why should you use Jenkins pipeline?

 Pipeline can be run in a loop.

 It supports larger projects that may involve a high CPU job, provided the Jenkins

infrastructure is scalable enough to support it.

 Since Jenkins pipeline is written in code, any number of users can use it as a template,

modify it and run customized tests and processes.

 Multiple jobs can be run in parallel.

 Jenkins Pipeline is robust. Pipeline can automatically be resumed from it might have

stopped for any reason.

Understanding the pipeline

 PipelineA user-defined block, which contains all the processes such as build, test, deploy,

etc. All the stages and steps are defined in this block.

 NodeThe node is a machine on which Jenkins runs. A node block is used in scripted

pipeline syntax.

 StageThis block contains a series of steps in a pipeline. i.e., build, test, deploy processes

on a stage.

Let us see an example for multiple stages, where each stage performs a specific task:

Multiple Stages in Jenkins pipeline

 StepA step is a single task that executes a particular process at a defined time. A pipeline

involves steps defined within a stage block.

Single step in Jenkins pipeline

Defining a Jenkins pipeline

The following steps run smoothly once you have the initial configuration and installations

complete for Jenkins.

1

For Jenkins Pipeline, install the Pipeline plugin

Go to Manage Jenkins > Manage Plugins > Available section > Search Pipeline.

If you are already installed Pipeline It will display in the Installed section.

Create a new project with the Pipeline.

2

Go to Jenkins Home > New Item > Create Project with Pipeline

After creating Pipeline Project the following window should appear:

Create project with Jenkins Pipeline

This is where we write pipeline code.

The two options seen in the image are as follows:

 Pipeline ScriptWrite the Pipeline directly on Jenkins.

 Pipeline Script from SCMWrite Jenkinsfile and upload it on any SCM and then use it

from that repository.

 Jenkins Scripted Pipeline

Jenkins pipelines are traditionally written as scripted pipelines. Ideally, the scripted pipeline is

stored in the Jenkins webUI as a Jenkins file. The end-to-end scripted pipeline script is written in

Groovy.

 It requires knowledge of Groovy programming as a prerequisite.

 The Jenkinsfile starts with the word node.

 Can contain standard programming constructs like if-else block, try-catch block, and so

on.

Sample Scripted Pipeline
node

 stage('Stage 1')

 echo 'hello'

What Is Jenkins Declarative Pipeline?

The Declarative Pipeline subsystem in Jenkins Pipeline is relatively new, and provides a

simplified, opinionated syntax on top of the Pipeline subsystems.

 The latest addition in Jenkins pipeline job creation technique.

 Jenkins declarative pipeline needs to use the predefined constructs to create pipelines. Hence, it

is not flexible as a scripted pipeline.

 A Jenkinsfile starts with the word pipeline.

Jenkins declarative pipelines should be the preferred way to create a Jenkins job, as they offer a

rich set of features, come with less learning curve, and there are no prerequisites to learn a

programming language like Groovy just for the sake of writing pipeline code.

We can also validate the syntax of the declarative pipeline code before running the job. It helps

to avoid a lot of runtime issues with the build script.

Our First Declarative Pipeline

pipeline

 agent any

 stages

 stage('Welcome Step')

 steps

 echo 'Welcome to LambdaTest'

We recommend VS Code IDE for writing Jenkins pipeline scripts, especially when creating

Jenkins Declarative pipeline examples.

Running Your First Declarative Pipeline

Now that you are well-acquainted with the Jenkins pipeline’s basics, it’s time to dive deeper. In

this section, we will learn how to run a Jenkins declarative pipeline.

Let us run our Jenkins declarative pipeline step by step.

Step 1: Open Jenkins home page (http://localhost:8080 in local) & click on New Item from the

left side menu.

Step 2: Enter Jenkins job name, choose the style as Pipeline, and click OK.

Step 3: Scroll down to the Pipeline section and copy-paste your first Declarative style Pipeline

code from below to the script textbox.

Step 4: Click on the Save button and click on Build Now from the left side menu.

We can see the build running stage by stage in Stage View.

Step 5: To check logs from Build Job, click on any stage and click on the check logs button. Or

you can use the Console Output from the left side menu to see the logs for the build.

	What is Jenkins Pipeline?
	Why should you use Jenkins pipeline?

	Understanding the pipeline
	Defining a Jenkins pipeline
	For Jenkins Pipeline, install the Pipeline plugin
	Go to Jenkins Home > New Item > Create Project with Pipeline

	Jenkins Scripted Pipeline
	Sample Scripted Pipeline

	What Is Jenkins Declarative Pipeline?
	Our First Declarative Pipeline

	Running Your First Declarative Pipeline

