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Hierarchical Methods 

A hierarchical clustering method works by grouping data objects into a tree of clusters. 

Hierarchical clustering methods can be further classified as either agglomerative or divisive, 

depending on whether the hierarchical decomposition is formed in a bottom-up (merging) 

or top-down (splitting) fashion. The quality of a pure hierarchical clustering method suffers 

from its inability to perform adjustment once a merge or split decision has been executed. 

That is, if a particular merge or split decision later turns out to have been a poor choice, the 

method cannot backtrack and correct it. Recent studies have emphasized the integration of 

hierarchical agglomeration with iterative relocation methods.  

Agglomerative and Divisive Hierarchical Clustering  

In general, there are two types of hierarchical clustering methods:  

1) Agglomerative hierarchical clustering: This bottom-up strategy starts by placing each 

object in its own cluster and then merges these atomic clusters into larger and larger 

clusters, until all of the objects are in a single cluster or until certain termination conditions 

are satisfied. Most hierarchical clustering methods belong to this category. They differ only 

in their definition of inter-cluster similarity. 

 2)Divisive hierarchical clustering: This top-down strategy does the reverse of agglomerative 

hierarchical clustering by starting with all objects in one cluster. It subdivides the cluster into 

smaller and smaller pieces, until each object forms a cluster on its own or until it satisfies 

certain termination conditions, such as a desired number of clusters is obtained or the 

diameter of each cluster is within a certain threshold. 

Agglomerative versus divisive hierarchical clustering.  

The below figure shows the application of AGNES (AGglomerative NESting), an 

agglomerative hierarchical clustering method, and DIANA (DIvisive ANAlysis), a divisive 

hierarchical clustering method, to a data set of five objects, {a, b, c, d, e}. Initially, AGNES 

places each object into a cluster of its own. The clusters are then merged step-by-step 

according to some criterion. For example, clusters C1 and C2 may be merged if an object in 

C1 and an object in C2 form the minimum Euclidean distance between any two objects from 

different clusters. This is a single-linkage approach in that each cluster is represented by all 

of the objects in the cluster, and the similarity between two clusters is measured by the 

similarity of the closest pair of data points belonging to different clusters. The cluster 

merging process repeats until all of the objects are eventually merged to form one cluster. 

In DIANA, all of the objects are used to form one initial cluster. The cluster is split according 

to some principle, such as the maximum Euclidean distance between the closest 

neighboring objects in the cluster. The cluster splitting process repeats until, eventually, 

each new cluster contains only a single object. 



                                 

 

In either agglomerative or divisive hierarchical clustering, the user can specify the desired 

number of clusters as a termination condition. A tree structure called a dendrogram is 

commonly used to represent the process of hierarchical clustering. It shows how objects are 

grouped together step by step. Figure 7.7 shows a dendrogram for the five objects 

presented in Figure 7.6, where l = 0 shows the five objects as singleton clusters at level 0. At 

l = 1, objects a and b are grouped together to form the first cluster, and they stay together 

at all subsequent levels. We can also use a vertical axis to show the similarity scale between 

clusters. For example, when the similarity of two groups of objects, {a, b} and {c, d, e}, is 

roughly 0.16, they are merged together to form a single cluster. Four widely used measures 

for distance between clusters are as follows, where |p-p’| is the distance between two 

objects or points, p and p0; mi is the mean for cluster, Ci; and ni is the number of objects in 

Ci. 

 
When an algorithm uses the minimum distance, dmin(Ci, Cj), to measure the distance 

between clusters, it is sometimes called a nearest-neighbor clustering algorithm. oreover, if 

the clustering process is terminated when the distance between nearest clusters exceeds an 

arbitrary threshold, it is called a single-linkage algorithm. If we view the data points as nodes 

of a graph, with edges forming a path between the nodes in a cluster, then the merging of 

two clusters, Ci and Cj, corresponds to adding an edge between 



 

K-Means Clustering 

K-Means is easily the most popular clustering algorithm due to its simplicity. Ultimately, it 

assumes that the closer data points are to each other, the more similar they are. The process 

is as follows: 

1. Choose the number of clusters K 

2. Randomly establish the initial position for each centroid 

3. Assign each data point to the nearest centroid using the distance measure 

4. Reset each centroid location using the mean of the data points assigned to each cluster 

5. Return to step 3 and repeat until no single data point changes cluster 

How do you find the optimal number of clusters, K? 

One of the most difficult steps in clustering is to determine the optimal number of 

clusters, K, to group the data, and there is no ‘right’ answer. The most common approach is 

known as ‘the elbow method’. Essentially, it runs K-Means clustering on the whole dataset 

for various values of K and calculates the overall sum of squared errors (SSE) for each K. 



It is important to plot the results. The plot resembles an arm, and as the name suggests, the 

value of K where the steepness changes the most (i.e. the elbow) is considered the optimal 

number of clusters. The objective is not to find the K that minimizes total squared distance, 

but rather the K that results in diminishing returns when K is increased. 

 

In our example, the elbow method returns a value of 3 as the optimal number of clusters 

(and we know this to be correct based on the actual data). 

What is the distance measure? 

The K-Means algorithm uses the Euclidean Distance Measure. This means that the measure 

of distance around each cluster center is ‘circular’. Said differently, the importance of each 

dimension is equal, hence the term ‘circular’. The distance can be defined as 

 

where J represents the number of dimensions. 



In our example, we apply this formula to two dimensions: 

 

 

If we compute the distance between the Height and Weight of Derrick Henry (DH) versus the 

Heights and Weights of the RB and TE centroids, we see that there is a much shorter distance 

to the TE centroid and therefore, he is classified as a TE. 

 

How do you reset each centroid location? 

Having assigned each data point to a cluster, we simply calculate the arithmetic mean of the 

data points for each dimension in each cluster (i.e. the mean of all player Heights and the 

mean of all player Weights for each position). This is then the new position of each centroid. 

The use of the mean is where the algorithm gets its name: K-Means. 

The algorithm is implemented directly in the sklearn.cluster.KMeans package. However, we 

will go through a small example to show what happens after step 1 (determining the optimal 

number of clusters). 



 
To start, in step 2, each centroid is randomly initialized. In the second image, step 3, the 
data points are assigned to the centroid that is closest using the distance measure. 

 
Next, each centroid location is reset based on the mean. In the second image, the data 
points are reassigned to the centroid that now has the least distance to the data point. 

 
The process above is repeated 



 
The process is finished since no data point changes clusters with the new centroid locations 

We ran the algorithm on the data set in Python and the results were encouraging. 

 
Results: The clusters correspond to the actual data clusters with only three players being 

misclassified. We are able to easily evaluate the clustering since we already know each 

players’ position. All DTs were clustered into one group successfully, but that is not surprising 

given that we could see that by eye. What is impressive is that the majority of the RBs and 

TEs were clustered correctly despite appearing to be one continuous group of data. 

Advantages of K-Means: 



• Simple to understand 

• Very quick (all that is being computed is the distance between each point and cluster 

center) 

• Easy to implement 

Disadvantages of K-Means: 

• Must choose K manually 

• Depends on initial centroid locations 

• Potential to misrepresent centroid positions due to outliers 

KModes clustering : 

It is basically a collection of objects based on similarity and dissimilarity between 

them. KModes clustering is one of the unsupervised machine learning algorithmsthat is 

used to cluster categorical variables. 

How Does the KModes Algorithm Work? 

Unlike Hierarchial clustering methods, we need to upfront specify the K. 

1. Pick K observations at random and use them as leaders/clusters 

2. Calculate the dissimilarities and assign each observation to its closest cluster 

3. Define new modes for the clusters 

4. Repeat 2–3 steps until there are is no re-assignment required 

I hope you got the basic idea of the KModes algorithm by now. So let us quickly take an 

example to illustrate the working step by step. 



Example: Imagine we have a dataset that has the information about hair color, eye color, and 

skin color of persons. We aim to group them based on the available information(maybe we 

want to suggest some styling ideas) 

 

Hair color, eye color, and skin color are all categorical variables. Below  is how our 

dataset looks like. 

 

Alright, we have the sample data now. Let us proceed by defining the number of clusters(K)=3 

Step 1: Pick K observations at random and use them as leaders/clusters 

I am choosing P1, P7, P8 as leaders/clusters 



 

  

Leaders and Observations 

Step 2: Calculate the dissimilarities(no. of mismatches) and assign each observation to its 

closest cluster 

Iteratively compare the cluster data points to each of the observations. Similar data points 

give 0, dissimilar data points give 1. 



 

Comparing leader/Cluster P1 to the observation P1 gives 0 dissimilarities. 

 

Comparing leader/cluster P1 to the observation P2 gives 3(1+1+1) dissimilarities. 



Likewise, calculate all the dissimilarities and put them in a matrix as shown below and assign 

the observations to their closest cluster(cluster that has the least dissimilarity) 

 

  

Dissimilarity matrix  

After step 2, the observations P1, P2, P5 are assigned to cluster 1; P3, P7 are assigned to 

Cluster 2; and P4, P6, P8 are assigned to cluster 3. 

Note: If all the clusters have the same dissimilarity with an observation, assign to any cluster 

randomly. In our case, the observation P2 has 3 dissimilarities with all the leaders. I randomly 

assigned it to Cluster 1. 

Step 3: Define new modes for the clusters 

Mode is simply the most observed value. 

Mark the observations according to the cluster they belong to. Observations of Cluster 1 are 

marked in Yellow, Cluster 2 are marked in Brick red, and Cluster 3 are marked in Purple. 



 

  

Looking for Modes (Image by author) 

Considering one cluster at a time, for each feature, look for the Mode and update the new 

leaders. 

Explanation: Cluster 1 observations(P1, P2, P5) has brunette as the most observed hair color, 

amber as the most observed eye color, and fair as the most observed skin color. 

Note: If you observe the same occurrence of values, take the mode randomly. In our case, the 

observations of Cluster 3(P3, P7) have one occurrence of brown, fair skin color. I randomly 

chose brown as the mode. 

Below are our new leaders after the update. 

 

  

Obtained new leaders 



Repeat steps 2–4 

After obtaining the new leaders, again calculate the dissimilarities between the observations 

and the newly obtained leaders. 

 

Comparing Cluster 1 to the observation P2 gives 2 dissimilarities. 

Likewise, calculate all the dissimilarities and put them in a matrix. Assign each observation to 

its closest cluster. 

 



Expectation -maximization algorithm: 

In the real-world applications of machine learning, it is very common that there are many 
relevant features available for learning but only a small subset of them are observable. So, 
for the variables which are sometimes observable and sometimes not, then we can use 
the instances when that variable is visible is observed for the purpose of learning and then 
predict its value in the instances when it is not observable. 

On the other hand, Expectation-Maximization algorithm can be used for the latent 
variables (variables that are not directly observable and are actually inferred from the 
values of the other observed variables) too in order to predict their values with the 
condition that the general form of probability distribution governing those latent variables 
is known to us. This algorithm is actually at the base of many unsupervised clustering 
algorithms in the field of machine learning. 
It was explained, proposed and given its name in a paper published in 1977 by Arthur 
Dempster, Nan Laird, and Donald Rubin. It is used to find the local maximum likelihood 
parameters of a statistical model in the cases where latent variables are involved and the 
data is missing or incomplete. 
  
Algorithm: 
1. Given a set of incomplete data, consider a set of starting parameters. 
2. Expectation step (E – step): Using the observed available data of the dataset, estimate 

(guess) the values of the missing data. 
3. Maximization step (M – step): Complete data generated after the expectation (E) step 

is used in order to update the parameters. 
4. Repeat step 2 and step 3 until convergence. 

 

The essence of Expectation-Maximization algorithm is to use the available observed data 
of the dataset to estimate the missing data and then using that data to update the values 
of the parameters. Let us understand the EM algorithm in detail. 

• Initially, a set of initial values of the parameters are considered. A set of incomplete 
observed data is given to the system with the assumption that the observed data 
comes from a specific model. 

• The next step is known as “Expectation” – step or E-step. In this step, we use the 
observed data in order to estimate or guess the values of the missing or incomplete 
data. It is basically used to update the variables. 



• The next step is known as “Maximization”-step or M-step. In this step, we use the 
complete data generated in the preceding “Expectation” – step in order to update the 
values of the parameters. It is basically used to update the hypothesis. 

• Now, in the fourth step, it is checked whether the values are converging or not, if yes, 
then stop otherwise repeat step-2 and step-3 i.e. “Expectation” – step and 
“Maximization” – step until the convergence occurs. 

Flow chart for EM algorithm – 
 

 
Usage of EM algorithm – 
• It can be used to fill the missing data in a sample. 
• It can be used as the basis of unsupervised learning of clusters. 
• It can be used for the purpose of estimating the parameters of Hidden Markov Model 

(HMM). 
• It can be used for discovering the values of latent variables. 
Advantages of EM algorithm – 
• It is always guaranteed that likelihood will increase with each iteration. 
• The E-step and M-step are often pretty easy for many problems in terms of 

implementation. 
• Solutions to the M-steps often exist in the closed form. 
Disadvantages of EM algorithm – 
• It has slow convergence. 
• It makes convergence to the local optima only. 
• It requires both the probabilities, forward and backward (numerical optimization 

requires only forward probability). 
Self Organizing Maps – Kohonen Maps: 
Self Organizing Map (or Kohonen Map or SOM) is a type of Artificial Neural Network which 
is also inspired by biological models of neural systems from the 1970s. It follows an 
unsupervised learning approach and trained its network through a competitive learning 
algorithm. SOM is used for clustering and mapping (or dimensionality reduction) techniques 
to map multidimensional data onto lower-dimensional which allows people to reduce 



complex problems for easy interpretation. SOM has two layers, one is the Input layer and the 
other one is the Output layer.  
The architecture of the Self Organizing Map with two clusters and n input features of any 
sample is given below:  

 

How do SOM works? 

Let’s say an input data of size (m, n) where m is the number of training examples and n is 
the number of features in each example. First, it initializes the weights of size (n, C) where C 
is the number of clusters. Then iterating over the input data, for each training example, it 
updates the winning vector (weight vector with the shortest distance (e.g Euclidean 
distance) from training example). Weight updation rule is given by :  

wij = wij(old) + alpha(t) *  (xi
k - wij(old)) 

where alpha is a learning rate at time t, j denotes the winning vector, i denotes the 
ith feature of training example and k denotes the kth training example from the input data. 
After training the SOM network, trained weights are used for clustering new examples. A 
new example falls in the cluster of winning vectors.  
Gaussian Mixture Models 

The Gaussian Mixture Model is an Expectation-Maximization (EM) algorithm with data points 

that are assumed to have a Gaussian (Normal) distribution. It is commonly described as a 

more sophisticated version of K-Means. It requires two parameters, the mean and the 

covariance, to describe the position and shape of each cluster. 

The model is based on the multivariate Gaussian distribution which is: 



 

where for each cluster, 

 

GMM requires a five step process: 

1. Choose the number of clusters, K 

2. Randomly establish the initial parameters for each centroid (ie the mean, covariance and 

weighting) 

3. Calculate the likelihood that the data set has come from this set of clusters with the 

current parameters 

4. Maximize the likelihood by changing the parameters (cluster proportions, centers and 

spread around the centers) 

5. Return to step 3 and repeat until the change in the parameters is less than a pre-

programmed amount or a fixed number of iterations have been completed. 

What is the Expectation-Maximization algorithm? 

EM starts by calculating the likelihood that a given data point comes from the mixture of 

Gaussian distributions with the current set of parameters. It then maximizes the likelihood by 

changing the parameters. 

What is the likelihood and how is it maximized? 



The likelihood function is based on the probability that a data point comes from the 

weighted collection of Gaussian clusters: 

 

where 

 

Of course, the weights will sum to 1. 

The likelihood is then the probability of the whole data set of N data points coming from the 

set of clusters with these parameters. 

 
 

Expectation: without assigning a data point to an individual cluster, we calculate the 

probability that the parameters of each cluster will generate each data point. This means re-

calculating for each iteration a new value of P(x) as given above. 

Maximization: we need to update the weight, mean and covariance for each cluster 

respectively, using the following formulae: 

 

 

 



Running the algorithm on our data set gave slightly better results than K-Means. 

 
GMM successfully clustered the data into three groups; however, it mis-assigned one RB 
and one TE. 

Results: All DTs were again clustered into one group successfully while Derrick Henry was 

again misclassified as a Tight End and a Tight End was misclassified as a Running Back. 

Advantages of GMM: 

• can analyze more complex and mixed data 

• can handle outliers more easily 

Disadvantages of GMM: 

• more difficult to directly interpret results 

• does not directly assign data points to clusters 
 



 

 

 
 


