
LECTURE NOTES ON

CLOUD COMPUTING

III B. Tech II semester (JNTUA-R15)

Mrs. S.Sunitha,

 Assistant Professor

Department of CSE

G.Pullaiah college of Engineering and Technology

Kurnool.

Unit 3

Platform as a Service

Platform as a Service (PaaS) provides a runtime environment. It allows programmers to easily create, test, run, and

deploy web applications. You can purchase these applications from a cloud service provider on a pay-as-per use basis and

access them using the Internet connection. In PaaS, back end scalability is managed by the cloud service provider, so end-

users do not need to worry about managing the infrastructure. PaaS is a cloud delivery model for application composed of

services managed by third party. In this computing model , providers rent developers everything they need to built an

application: development tools , infrastructure and operating system. An internet connection is all that physically required to

access Paas, making it possible for developers to build an entire application in a web browser.

PaaS includes infrastructure (servers, storage, and networking) and platform (middleware, development tools,

database management systems, business intelligence, and more) to support the web application life cycle.

Example: Google App Engine, Force.com, Joyent, Azure.

PaaS providers provide the Programming languages, Application frameworks, Databases, and Other tools:

1. Programming languages

PaaS providers provide various programming languages for the developers to develop the applications. Some popular

programming languages provided by PaaS providers are Java, PHP, Ruby, Perl, and Go.

2. Application frameworks

PaaS providers provide application frameworks to easily understand the application development. Some popular application

frameworks provided by PaaS providers are Node.js, Drupal, Joomla, WordPress, Spring, Play, Rack, and Zend.

3. Databases

PaaS providers provide various databases such as ClearDB, PostgreSQL, MongoDB, and Redis to communicate with the

applications.

4. Other tools

PaaS providers provide various other tools that are required to develop, test, and deploy the applications.

The following diagram shows how PaaS offers an API and development tools to the developers and how it helps the end user

to access business applications.

Characteristics

Here are the characteristics of PaaS service model:

• PaaS offers browser based development environment. It allows the developer to create database and edit the

application code either via Application Programming Interface or point-and-click tools. Online integrated

development environment also known as web IDE or Cloud IDE ia a browser based integrated development

environment. An IDE does not usually contain same features as traditional desktop IDE. IDE features a source

code editor with syntax highlighting.

• PaaS provides built-in security, scalability, and web service interfaces. The cloud provided application

development platform provides greater run and manage business applications.

• PaaS provides built-in tools for defining workflow, approval processes, and business rules. PaaS takes care of all

the system administration details of setting up servers and virtual machines installing runtimes, libraries,

middleware, configuring build and testing tools. The work flow in Paas is as simple as coding in the IDE and then

pushing the code using tools like Git and seeing the changes immediately.

• It is easy to integrate PaaS with other applications on the same platform. Integration of application is a form of

systems integration business delivered as a cloud computing service that addresses data, process, SOA and

application integration. Cloud provided application development platform provides greater flexibility, as with

other cloud services such as IaaS and public cloud PaaS, the customer controls software deployment while the

PaaS services can also include web service integration.

• PaaS also provides web services interfaces that allow us to connect the applications outside the platform.

Advantages of PaaS
There are the following advantages of PaaS -

1) Simplified Development
PaaS allows developers to focus on development and innovation without worrying about infrastructure management.

2) Lower risk

No need for up-front investment in hardware and software. Developers only need a PC and an internet connection to start building
applications.

3) Prebuilt business functionality

Some PaaS vendors also provide already defined business functionality so that users can avoid building everything from very scratch and
hence can directly start the projects only.

4) Instant community

PaaS vendors frequently provide online communities where the developer can get the ideas to share experiences and seek advice from others.
5) Scalability

Applications deployed can scale from one to thousands of users without any changes to the applications.

Disadvantages of PaaS cloud computing layer

1) Vendor lock-in
One has to write the applications according to the platform provided by the PaaS vendor, so the migration of an application to another PaaS

vendor would be a problem.

2) Data Privacy
Corporate data, whether it can be critical or not, will be private, so if it is not located within the walls of the company, there can be a risk in

terms of privacy of data.

3) Integration with the rest of the systems applications
It may happen that some applications are local, and some are in the cloud. So there will be chances of increased complexity when we want to

use data which in the cloud with the local data.

Architecture of PaaS

Platform as a service (PaaS) is a cloud-computing and software development paradigm aimed at supporting rapid

development. PaaS aims to attach itself to, and extend pre-existing virtualized infrastructure offerings. PaaS adds to these

offerings the ability to automatically configure a virtualized environment and install ready-to-use software stacks. By adding

the software layer this model provides a highly scalable self-service solution, which can be leveraged for development and

delivery purposes. This helps alleviate the long-standing tradition of manually configuring virtual machines, their operating

systems and base-level configurations in preparation for development. The primary objective of PaaS or any automation

solution is to aid developers by making them more efficient. Abstracting and automating commonly tedious infrastructure

and configuration management tasks makes PaaS an alluring development paradigm for modern software organizations.

Effective PaaS implementations provide a set of virtual machines and an A la Carte menu of software stacks, which

are configured upon request. Most PaaS service providers will wrap the entire system into a uniquely accessible entity and

provide a common interface where end-users can select the desired OS and preferred software stacks. This allows them to

spin up environments (complete with attached applications and development infrastructures) via a button click. At the time of

its inception the PaaS the paradigm was quite novel and innovative. It expanded on the self-service model of Infrastructure as

a Service ("IaaS") and saved significant amounts of time. This in turn made developers more productive.

PaaS is most commonly seen as a logical extension of IaaS. This evolutionary nature is very popular across modern

software technologies in engineering. What once started as bare metal hardware slowly evolved into progressive virtualized

machines and then finally into micro-sized containers and PaaS offerings. This evolutionary nature has led to many

innovations related to virtualized systems, software configuration management and the coupling of the two. The figure below

illustrates the historical milestones, which led to the fruition of PaaS based solutions in 2006.

As the innovative concept of PaaS gains traction and becomes more widely adopted throughout the technology

industry, concrete implementation examples and best practices are also evolving. To date there are a number of documentary

whitepapers and high-level architectural best practices. The next figure presents a high-level architecture diagram of a PaaS

based service. It is based on research of implementations by industry pioneers; including IBM, NetFlix and others.

From the diagram above we can visualize PaaS service providers and begin to understand the interconnected

interfaces of PaaS, and IaaS. As we can see the base level VMs are provisioned via modern IaaS interfaces and then

configuration management software (Ansible, Salt Stack, Chef, Puppet, Vagrant etc.) is leveraged by the PaaS interface to

install and manage the requested software solutions. Finally the appropriately requested appliance is delivered to the

requesting user via a seamless virtual interface. Once the appliance has served its purpose, it is torn down and removed. This

automatic teardown helps the need for IT management of individual VMs and keeps the system scalable.

As PaaS solutions have evolved a new era of container based applications, micro architectures, and PaaS service

providers have materialized. The crop up of scalable virtualized solutions and related ancillary tools is a result of the

continuing decline in infrastructure costs and the increasing availability of reliable virtualized systems.

PaaS Types

Based on the functions, PaaS can be classified into four types as shown in the following diagram:

Stand-alone development environments

The stand-alone PaaS works as an independent entity for a specific function. It does not include licensing or technical

dependencies on specific SaaS applications.

Application delivery-only environments

The application delivery PaaS includes on-demand scaling and application security.

Open platform as a service

Open PaaS offers an open source software that helps a PaaS provider to run applications.

Add-on development facilities

The add-on PaaS allows to customize the existing SaaS platform.

Azure Cloud

Azure is a complete cloud platform that can host existing applications and streamline new application

development. Azure can even enhance on-premises applications. Azure integrates the cloud services that need to develop,

test, deploy,and manage applications, all while taking advantage of the efficiencies of cloud computing. By hosting your

applications in Azure, start small and easily scale application as customer demand grows. Azure also offers the reliability

that's needed for high-availability applications, even including failover between different regions. The Azure portal lets you

easily manage all your Azure services. You can also manage services programmatically by using service-specific APIs and

templates. This guide is an introduction to the Azure platform for application developers. It provides guidance and direction

that need to start building new applications in Azure or migrating existing applications to Azure.

Start Azure

First ,decide on how to host application in Azure. Need to manage entire infrastructure as a virtual machine(VM),

use the platform management facilities that Azure provides, need a serverless framework to host code execution only. The

application needs cloud storage, which Azure provides several options and can take advantage of Azure's enterprise

authentication.

Application hosting

Azure provides several cloud-based compute offerings to run application so that you don't have to worry about the

infrastructure details. Applications can easily scale up or scale out resources as application usage grows. Azure offers

services that support to application development and hosting needs. Azure provides Infrastructure as a Service(IaaS) to give

full control over application hosting. Azure's Platform as a Service(PaaS) offerings provide the fully managed services

needed to power apps. There's even true serverless hosting in Azure where all that needed is write code.

Azure App Service

When the quickest path to publish web-based projects, consider Azure App Service. App Service makes it easy to

extend web apps to support mobile clients and publish easily consumed REST APIs. This platform provides authentication

by using social providers, traffic-based autoscaling, testing in production, and continuous and container-based deployments.

We can create web apps, mobileapp back ends,and APIapps. Because all three app types share the App Service runtime ,can

host a website, support mobile clients, and expose APIs in Azure, all from the same project or solution.

Azure Virtual Machines

As an Infrastructureas aService(IaaS) provider, Azure lets deploy to or migrate application to either Windows or

Linux VMs. Together with Azure Virtual Network, Azure Virtual Machines supports the deployment of Windows or Linux

VMs to Azure. With VMs, we have total control over the configuration of the machine. When using VMs, we are responsible

for all server software installation, configuration, maintenance, and operating system patches. Because of the level of control

that have with VMs, we can run a wide range of server workloads on Azure that don't fit into a PaaS model. These

workloads include database servers, Windows Server Active Directory, and Microsoft SharePoint.

Azure Functions (serverless)

Rather than worrying about building out and managing a whole application or the infrastructure to run code, what

if we could just write the code and have it run in response to events or on a schedule? Azure Functions is a "serverless"-style

offering that lets you write just the code needed. With Functions, we can trigger code execution with HTTP requests, web

hooks, cloud service events, or on a schedule. We can code in development language of choice, such as C#,F#, Node.js,

Python, or PHP. With consumption-based billing, you pay only for the time that code executes, and Azure scales as needed.

Azure Service Fabric

Azure Service Fabric is a distributed systems platform. This platform makes it easy to build, package, deploy, and

manage scalable and reliable microservices. It also provides comprehensive application management capabilities such as:

Provisioning Deploying Monitoring Upgrading/patching Deleting Apps, which run on a shared pool of machines, can start

small and scaleto hundreds or thousands of machines as needed.

Azure Spring Cloud

Azure Spring Cloud is a serverless microservices platform that enables to build, deploy, scale and monitor your

applications in the cloud. Use Spring Cloud to bring modern microservice patterns to Spring Bootapps, eliminating boiler

plate code to quickly build robust Java apps.

• Leverage managed versions of Spring Cloud Service Discovery and Config Server, while we ensure those critical

components are running in optimum conditions.

• Focus on building your business logic and we will take care of your service runtime with security patches,

compliance standards and high availability.

• Manage application lifecycle(e.g.: deploy, start, stop, scale) on top of Azure Kubernetes Service.

• Easily bind connections between your apps and Azure services such as Azure Database for MySQL and Azure

Cache for Redis.

• Monitor and troubleshoot micro services and applications using enterprise-grade unified monitoring tools that offer

deep insights on application dependencies and operational telemetry.

• Azure Storage: Offers durable, highly available storagefor blobs, queues, files, and other kinds of non relational

data. Storage provides the storage foundation for VMs

• Azure SQL Database: An Azure-based version of the MicrosoftSQL Server engine for storing relational tabular

data in thecloud.SQL Database provides predictable performance, scalability with no downtime, business

continuity, and data protection.

Aneka Cloud
Aneka is a software platform and a framework for developing distributed applications on the cloud. It harnesses

the computing resources of a heterogeneous network of workstations and servers or data centers on demand. Aneka

provides developers with a rich set of APIs for transparently exploiting these resources by expressing the application

logic with a variety of programming abstractions. System administrators can leverage a collection of tools to monitor

and control the deployed infrastructure. This can be a public cloud available to anyone through the Internet, a private

cloud constituted by a set of nodes with restricted access within an enterprise, or a hybrid cloud where external resources

are integrated on demand, thus allowing applications to scale. Figure 9.1 provides a layered view of the framework.

Aneka is essentially an implementation of the PaaS model, and it provides a runtime environment for executing

applications by leveraging the underlying infrastructure of the cloud. Developers can express distributed applications by

using the API contained in the Software Development Kit (SDK) or by porting existing legacy applications to the cloud.

Such applications are executed on the Aneka cloud, represented by a collection of nodes connected through the network

hosting the Aneka container. The container is the building block of the middleware and represents the runtime

environment for executing applications; it contains the core functionalities of the system and is built up from an

extensible collection of services that allow administrators to customize the Aneka cloud. There are three classes of

services that characterize the container:

• Execution Services. They are responsible for scheduling and executing applications. Each of the

programming models supported by Aneka defines specialized implementations of these services for managing

the execution of a unit of work defined in the model.

• Foundation Services. These are the core management services of the Aneka container. They are in charge of

metering applications, allocating resources for execution, managing the collection of available nodes, and

keeping the services registry updated.

• Fabric Services: They constitute the lowest level of the services stack of Aneka and provide access to the

resources managed by the cloud. An important service in this layer is the Resource Provisioning Service,

which enables horizontal scaling3 in the cloud. Resource provisioning makes Aneka elastic and allows it to

grow or to shrink dynamically to meet the QoS requirements of applications.

The container relies on a platform abstraction layer that interfaces it with the underlying host, whether

this is a physical or a virtualized resource. Aneka also provides a tool for managing the cloud, allowing

administrators to easily start, stop, and deploy instances of the Aneka container on new resources and then

reconfigure them dynamically to alter the behavior of the cloud.

ANEKA RESOURCE PROVISIONING SERVICE

The most significant benefit of cloud computing is the elasticity of resources, services, and applications, which is

the ability to automatically scale out based on demand and users’ quality of service requests. Aneka as a PaaS not only

features multiple programming models allowing developers to easily build their distributed applications, but also

provides resource provisioning facilities in a seamless and dynamic fashion. Applications managed by the Aneka

container can be dynamically mapped to heterogeneous resources, which can grow or shrink according to the

application’s needs. This elasticity is achieved by means of the resource provisioning framework, which is composed

primarily of services built into the Aneka fabric layer. Figure 9.2 provides an overview of Aneka resource provisioning

over private and public clouds. This is a typical scenario that a medium or large enterprise may encounter; it combines

privately owned resources with public rented resources to dynamically increase the resource capacity to a larger scale.

Private resources identify computing and storage elements kept in the premises that share similar internal security and

administrative policies. Aneka identifies two types of private resources: static and dynamic resources. Static resources

are constituted by existing physical workstations and servers that may be idle for a certain period of time. Their

membership to the Aneka cloud is manually configured by administrators and does not change over time. Dynamic

resources are mostly represented by virtual instances that join and leave the Aneka cloud and are controlled by resource

pool managers that provision and release them when needed. Horizontal scaling is the process of adding more

computing nodes to a system. It is counter posed to vertical scaling, which is the process of increasing the computing

capability of a single computer resource.
Public resources reside outside the boundaries of the enterprise and are provisioned by establishing a service-level

agreement with the external provider. Even in this case we can identify two classes: on-demand and reserved resources.

On-demand resources are dynamically provisioned by resource pools for a fixed amount of time (for example, an hour)

with no long-term commitments and on a pay-as-you-go basis. Reserved resources are provisioned in advance by

paying a low, one-time fee and mostly suited for long-term usage. These resources are actually the same as static

resources, and no automation is needed in the resource provisioning service to manage them. Despite the specific

classification previously introduced, resources are managed uniformly once they have joined the Aneka cloud and all

the standard operations that are performed on statically configured nodes can be transparently applied to dynamic

virtual instances. Moreover, specific operations pertaining to dynamic resources, such as join and leave, are seen as

connection and disconnection of nodes and transparently handled. This is mostly due to the indirection layer provided

by the Aneka container that abstracts the specific nature of the hosting machine.

Aneka Hybrid Cloud Architecture

 The Resource Provisioning Framework represents the foundation on top of which Aneka-based hybrid clouds are

implemented. In this section we will introduce the components that compose this framework and briefly describe their

interactions. The basic idea behind the Resource Provisioning Framework is depicted in Figure 9.4. The resource

provisioning infrastructure is represented by a collection of resource pools that provide access to resource providers,

whether they are external or internal, and managed uniformly through a specific component called a resource pool

manager. A detailed description of the components follows:

• Resource Provisioning Service. This is an Aneka-specific service that implements the service interface and

wraps the resource pool manager, thus allowing its integration within the Aneka container.

• Resource Pool Manager. This manages all the registered resource pools and decides how to allocate resources

from those pools. The resource pool manager provides a uniform interface for requesting additional resources

from any private or public provider and hides the complexity of managing multiple pools to the Resource

Provisioning Service.

• Resource Pool. This is a container of virtual resources that mostly come from the same resource provider. A

resource pool is in charge of managing the virtual resources it contains and eventually releasing them when

they are no longer in use. Since each vendor exposes its own specific interfaces, the resource pool (a)

encapsulates the specific implementation of the communication protocol required to interact with it and (b)

provides the pool manager with a unified interface for acquiring, terminating, and monitoring virtual resources

The request for additional resources is generally triggered by a scheduler that detects that the current capacity is not

sufficient to satisfy the expected quality of services ensured for specific applications. In this case a provisioning request is

made to the Resource Provisioning Service. According to specific policies, the pool manager determines the pool

instance(s) that will be used to provision resources and will forward the request to the selected pools. Each resource pool

will translate the forwarded request by using the specific protocols required by the external provider and provision the

resources. Once the requests are successfully processed, the requested number of virtual resources will join the Aneka

cloud by registering themselves with the Membership Catalogue Service, which keeps track of all the nodes currently

connected to the cloud. Once joined the cloud the provisioned resources are managed like any other node. A release

request is triggered by the scheduling service when provisioned resources are no longer in use. Such a request is then

forwarded to the interested resources pool (with a process similar to the one described in the previous paragraph) that will

take care of terminating the resources when more appropriate. A general guideline for pool implementation is to keep

provisioned resources active in a local pool until their lease time expires. By doing this, if a new request arrives within

this interval, it can be served without leasing additional resources from the public infrastructure. Once a virtual instance is

terminated, the Membership Catalogue Service will detect a disconnection of the corresponding node and update its

registry accordingly. It can be noticed that the interaction flow previously described is completely independent from the

specific resource provider that will be integrated into the system. In order to satisfy such a requirement, modularity and

welldesigned interfaces between components are very important. The current design, implemented in Aneka, maintains

the specific implementation details within the Resource Pool implementation, and resource pools can be dynamically

configured and added by using the dependency injection techniques, which are already implemented for configuring the

services hosted in the container.

