
Unit-4

Software as a Service | SaaS

Software as a Service (SaaS) is a software deployment and licensing model in which software is

running on the cloud and is usually accessible for users through a web interface. National Institute of

Standards and Technology of USA defines SaaS as cloud service model in which service consumer uses

providers applications that run on a cloud infrastructure . It is one of the three main principles of cloud

computing, alongside Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). One of the first

and best-known companies that provide enterprise SaaS solutions is Salesforce [2]. The model of the

company is Business-to-Business (B2B), it was founded in 1999 and specialized in Customer Relations

Management (CRM) in the cloud. The solution was horizontal and targeted general business processes.

SaaS is also known as "On-Demand Software". It is a software distribution model in which services are hosted by a cloud service

provider. These services are available to end-users over the internet so, the end-users do not need to install any software on their

devices to access these services.

There are the following services provided by SaaS providers -

Business Services - SaaS Provider provides various business services to start-up the business. The SaaS business services

include ERP (Enterprise Resource Planning), CRM (Customer Relationship Management), billing, and sales.

Document Management - SaaS document management is a software application offered by a third party (SaaS providers) to

create, manage, and track electronic documents.

Example: Slack, Samepage, Box, and Zoho Forms.

Social Networks - As we all know, social networking sites are used by the general public, so social networking service providers

use SaaS for their convenience and handle the general public's information.

Mail Services - To handle the unpredictable number of users and load on e-mail services, many e-mail providers offering their

services using SaaS.

Characteristics

Here are the characteristics of SaaS service model:

• SaaS makes the software available over the Internet.

• The software applications are maintained by the vendor.

• The license to the software may be subscription based or usage based. And it is billed on recurring basis.

• SaaS applications are cost-effective since they do not require any maintenance at end user side.

• They are available on demand.

• They can be scaled up or down on demand.

• They are automatically upgraded and updated.

• SaaS offers shared data model. Therefore, multiple users can share single instance of infrastructure. It is not required to
hard code the functionality for individual users.

• All users run the same version of the software.

Open SaaS and SOA

Open SaaS uses those SaaS applications, which are developed using open source programming language. These SaaS
applications can run on any open source operating system and database. Open SaaS has several benefits listed below:

• No License Required

• Low Deployment Cost

• Less Vendor Lock-in

• More portable applications

• More Robust Solution

The following diagram shows the SaaS implementation based on SOA:

Advantages of SaaS cloud computing layer

1) SaaS is easy to buy

SaaS pricing is based on a monthly fee or annual fee subscription, so it allows organizations to access business functionality at a

low cost, which is less than licensed applications.

Unlike traditional software, which is sold as a licensed based with an up-front cost (and often an optional ongoing support fee),

SaaS providers are generally pricing the applications using a subscription fee, most commonly a monthly or annually fee.

2. One to Many

SaaS services are offered as a one-to-many model means a single instance of the application is shared by multiple users.

3. Less hardware required for SaaS

The software is hosted remotely, so organizations do not need to invest in additional hardware.

4. Low maintenance required for SaaS

Software as a service removes the need for installation, set-up, and daily maintenance for the organizations. The initial set-up cost

for SaaS is typically less than the enterprise software. SaaS vendors are pricing their applications based on some usage

parameters, such as a number of users using the application. So SaaS does easy to monitor and automatic updates.

5. No special software or hardware versions required

All users will have the same version of the software and typically access it through the web browser. SaaS reduces IT support costs

by outsourcing hardware and software maintenance and support to the IaaS provider.

6. Multidevice support

SaaS services can be accessed from any device such as desktops, laptops, tablets, phones, and thin clients.

7. API Integration

SaaS services easily integrate with other software or services through standard APIs.

8. No client-side installation

SaaS services are accessed directly from the service provider using the internet connection, so do not need to require any software

installation.

Disadvantages of SaaS cloud computing layer

1) Security

Actually, data is stored in the cloud, so security may be an issue for some users. However, cloud computing is not more secure than

in-house deployment.

2) Latency issue

Since data and applications are stored in the cloud at a variable distance from the end-user, there is a possibility that there may be

greater latency when interacting with the application compared to local deployment. Therefore, the SaaS model is not suitable for

applications whose demand response time is in milliseconds.

3) Total Dependency on Internet

Without an internet connection, most SaaS applications are not usable.

4) Switching between SaaS vendors is difficult

Switching SaaS vendors involves the difficult and slow task of transferring the very large data files over the internet and then

converting and importing them into another SaaS also.

Popular SaaS Providers

The below table shows some popular SaaS providers and services that are provided by them –

SaaS as a Software delivery model

SaaS is a software delivery and licensing model, according to which software provider stores and

maintains software on the cloud, and software consumer (end user) accesses it through the web

interface. Software delivery (or software deployment) is a process of transporting software to a user.

The result of software deployment is ready-touse software on the user side. Software deployment can

also be defined as processes between the acquisition and the execution of software . Even though SaaS

is considered a delivery model, there is no fixed list of delivery models. The motivation for it in literature

is that deployment process is a complex process that is unique for each product. The following stages of

deployment lifecycle are identified: Release, Installation, Activation, Updating, Undeployment

(deinstallation) . Table 1 shows how those stages are handled in SaaS and on-premise models. Table 1.

Deployment stages description in SaaS .

Scalability

Scalability is an ability of a program to scale. A highly scalable program performs similarly on

both small and big data sets. The term scalability is ambiguous in the context of SaaS and cloud

computing. It may refer to scalability as a SaaS success factor , hardware scalability, data (database)

scalability , architectural property (as it was in the literature review), and scalability in multi-tenancy . A

SaaS application is an alternative to multiple instances of on-premise applications. Multiple instances of

one application are independent of each other, which means the number of users (number of instances)

does not affect them in any way. To compete with on-premise applications on the market, SaaS

application also has to perform the same regardless of the number of users, so it has to scale effectively,

which means scalability is an essential property of a SaaS application. Two main hardware scaling

approaches are horizontal and vertical scaling, which can also be referred to as scaling out and scaling

up respectively . Vertical scaling, in this case, means moving an application to a server with more

computational power, horizontal scaling means adding more servers. The vertical approach usually does

not require any changes in the software. The horizontal approach may not be suitable for some

architectures. For example, suppose we have an application which works with high readwrite intensity

data. If the data is stored in RAM and is dumped to the database on termination to achieve high

performance, such application would not be horizontally scalable, because after user writes data, only

the server that was serving that client would have it and other servers would not. At the same time,

vertical scalability is applicable for that case. Data or database scalability describes how database

behavior changes with the increase of data amount. In SaaS application, one database can serve

thousands of customers . In that case query execution typically slows down. There are various methods

to improve database performance, for example, indexing and partitioning.

Multi-Tenancy

Multi-Tenancy is a software architectural property which indicates that some resources in the

application are shared among multiple tenants . Tenants, in that case, are users or groups of users who

have control over the portion of resources provided by the application. Multi-tenancy can be achieved

by either several instances or one instance of the application. Following these patterns, each tenant can

have his own database or a share of a common database. Multi-tenancy is tightly interconnected with

the other two architectural properties - scalability and customization. The key challenges in multi-

tenancy architecture are to provide data isolation, cost-efficiency, scalability and customization .

Isolation indicates that the data owned by one tenant cannot be accessed by another tenant and one

tenant's customizations do not affect other tenants . Customization in the context of multi-tenancy

mostly refers to customization of the data schemas which can be stored for each user, more specifically

database schemas . Maturity models which were discussed earlier suggest that mature SaaS applications

have some kind of a shared data schema, which leads to providing customization being a challenge.

Scalability in multi-tenancy refers both to individual tenants being able to scale their applications if

needed and to scale the whole system with the increasing number of tenants. For example, SaaS

services usually have free and paid plans. Free plans offer fewer resources compared to paid plans. If a

user moves to a paid plan from a free one, the application must grant him access to the higher amount

of resources

Customization

Customization as an architectural property in a SaaS application is a functionality that provides the user

with an ability to make changes in certain parts of software through a specially designed interface .

Customization is aimed at addressing specific needs of each customer. The ad-hoc software can be

created separately for each customer based on the customer’s individual needs (this is relevant for

corporate customers). To compete with this model SaaS applications also need a method to address

those needs. Customization can be achieved in the following steps: 1. Identifying the application areas

which may change according to customer’s needs 2. Build an architecture that allows different options

for these areas 3. Provide an interface for the user to manage the options for those areas For example,

PaaS Heroku has add-ons. This service allows users to choose an addon that wraps some external service

from a list of available add-ons and integrate it into the application. The service provider is responsible

for integrating, managing add-ons, the user only chooses them through GUI. Add-ons include DaaS,

monitoring and logging utilities, rendering utilities and more. An alternative to that model would be an

on-premise server or IaaS, where the user can choose any external services, but he has to install,

integrate, manage and update them manually (if they are not also provided via SaaS model). In [36] 6

possible customization levels are identified: Fixed variation points and fixed options - the example can

be predefined layouts in• online Integrated Development Environments (IDEs) Fixed variation points,

which allow tenant-supplied options - a non-SaaS example• is desktop wallpaper in an OS. A SaaS

example is a themed mechanism in Telegram messenger . Users in both cases can supply any item as

long as it fits pre-defined requirements. Allow tenants to create their own variation points and options•

Intelligent customization - applications are created by a user from a list of modules• Customizable SaaS

infrastructure - in addition to the application, the user can• customize SaaS SaaS and PaaS configuration

- in addition to application and SaaS, the user can• customize PaaS

Virtualization

 A virtualization is an act and process of creating a virtual version of an object . Virtualization allows

achieving encapsulation and modulation in the system. In the context of SaaS, it is mainly used to divide

resources between users (tenants). Also, the majority of IaaS providers, including DigitalOcean, employ

virtual machines. In virtualization is considered the highest level of SaaS maturity. In virtualization is

considered an approach to support multi-tenancy.

Redundancy

 Redundancy is a replication of some elements of the system in order to increase its reliability .

Reliability is critical in SaaS. On SaaS level, redundancy can be achieved by having multiple load

balancers and more servers than the minimum amount required to serve users. Databases can have

replicas with duplicated data.

