
Digital Logic Design And Computer Organization

UNIT-I

Computer Types

Computer:-

• Computer is a fast electronic calculating machine that accepts

digitized input information ,processes it according to a list of

internally stored instruction ,and produces the result out put

information.

• Here list of instructions called a computer program and the internal

storage is called computer memory.

Computer Organization

• Computer organization is defined as the way the hardware

components operate and the way they are connected

together to form the computer system.

Computer Types
• There are many types of computers that differ many factors like

size,cost ,performance and use of computer.

1)personal computer:
 -having processing and storage units ,display ,audio

 and keyboard.

 -used in homes ,schools and business offices.

2)Notebook computers:
 -compact version of personal computer .

 -all components are packed into a single unit with

 the size of briefcase.

3)Work sattions :

 -same as desktop but its having high resolution graphics I/O
capability.

 -More computational power than personal computers.

 -Used in Engineering applications and Interactive apllications.

4)Enterprise Systems or Main Frames :

 - Used for business data processing in medium to large corporations

that require much more computing power and storage capacity than

workstations.

5)Servers:
 -it contains sizable data units.

 -servers capable of handling large volumes of requests to access the

data.

 - used in education ,business and user personal communities.

6)Super Computers:
 -used for large scale numerical calculations.

 -Examples weather forecasting ,and aircraft design and simulation.

Computer Types

• Computer Consists of Five functionally independent parts:

1) Input 2) Memory 3) ALU 4) Output 5)Control Unit

-input unit accepts coded information from human operators from

electromechanical devices such as keyboard or from other computers

over communication lines.

-The received information is either stored in memory or used by ALU to

perform the desired operation.

-The processing steps are determined by a program stored in the

memory.

-Finally results are sent back to the outside world through the output unit.

-All the above operations are coordinated by the control unit.

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

• Instructions or Machine instructions are explicit

commands responsible for

 - The transfer of information with in a computer as

well as between the computer and its I/O devices.

 -It specify the ALU operations to be performed.

• A list of instructions that perform a task is called a

program.

• High level program called source program.

• Machine level program called object program.

• Information is encoded in the form of 0’s and 1’s.

Functional Units

Functional Units

• Input Unit:

 -accepts coded information through input unit.

 -when ever a key is pressed the corresponding letter or digit is

automatically translated into its corresponding binary code and

transmitted to memory or processor.

 -other input devices like joysticks ,mouse , microphone ,trackball etc.

• Memory Unit:

-Function of memory is to store programs and data.

-there are two types of memory

1.Primary memory

2.Secoundary memory

Primary Memory

-primary memory is fast memory operates at electronic speeds.

-memory is collection of semiconductor cells.

-Each cell is capable of storing one bit information.

-groups of fixed size cells called words.

-Each and every word is assigned with distinct addresses.

-the number of bits in each word is often referred as the word length of

the computer.

-The memory in which any location can be reached in short and fixed

amount of time after specifying its address is called random-access-

memory .

-The time required to access one word is called memory access time.

-cache are small and fast accessing RAM units .these are tightly coupled

with the processor to achieve high performance.

Secondary Storage:

-used to store large amount of data. Ex: tapes ,disk , optical disks.

Functional Units

ALU:

-Most of the computer operations are executed in the ALU of the

processor.

Ex: add,sub,mul,div

-access time to registers are fast when compared to cache in memory

hierarchy.

-The CU and ALU are many times faster than other devices that connect

to a computer system . So that a single processor to control many

external devices.

Output Unit:
-The output unit is counterpart of input unit.

-the main function is to send processed results to the outside world.

Ex: printers , monitors.

Functional Units

Functional Units

Control Unit:

-The control unit is effectively the nerve center that sends control signals

to the other units.

-the memory ,ALU ,an I/O units store and process information and

perform input and output operations. All these operations are carried

out by CU.

Operations of computer Summarized as:
-the computer accepts information in the form of programs and data

through an input unit and stores it in the memory.

-information stored in the memory is fetched under program control into

an ALU where it is processed.

-processed information leaves the computer through an output unit.

-All activities inside the machine are directed by the control unit.

Basic Operational Concepts
• Activity in a computer is governed by instructions.

• To perform a task, an appropriate program consisting of a list of

instructions is stored in the memory.

• Individual instructions are brought from the memory into the

processor, which executes the specified operations.

• Data to be used as operands are also stored in the memory.

• An Instruction : Add LOCA, R0

• Add the operand at memory location LOCA to the operand in a
register R0 in the processor.

• Place the sum into register R0.

• The original contents of LOCA are preserved.

• The original contents of R0 is overwritten.

• Instruction is fetched from the memory into the processor – the
operand at LOCA is fetched and added to the contents of R0 – the
resulting sum is stored in register R0.

Basic Operational Concepts

• Due to performance reasons the above instruction is implemented into

two instructions:

 Load LocA , R1

 Add R1,R0

• Whose contents will be overwritten?

Basic Operational Concepts

Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

Basic Operational Concepts
Registers
1) Instruction register (IR)

2) Program counter (PC)

3) General-purpose register (R0 – Rn-1)

4) Memory address register (MAR)

5) Memory data register (MDR)

Operating Steps
• Programs reside in the memory through input devices

• PC is set to point to the first instruction

• The contents of PC are transferred to MAR

• A Read signal is sent to the memory

• The first instruction is read out and loaded into MDR

• The contents of MDR are transferred to IR

• Decode and execute the instruction

Basic Operational Concepts

Operating Steps(Cont..)

• Get operands for ALU

General-purpose register

Memory (address to MAR – Read – MDR to ALU)

• Perform operation in ALU

• Store the result back

To general-purpose register

To memory (address to MAR, result to MDR – Write)

• During the execution, PC is incremented to the next instruction

Basic Operational Concepts

Interrupt

• Normal execution of programs may be preempted if some

device requires urgent servicing.

• The normal execution of the current program must be

interrupted – the device raises an interrupt signal.

• Interrupt-service routine

• Current system information backup and restore (PC,

general-purpose registers, control information)

Bus Structures

• To achieve good performance of a computer system all the computer

units can transfer one word of data at a time.

• All the bits of a word transfer in parallel, that is the bits are

transferred simultaneously over many lines one bit per line.

• There are many ways to connect different parts inside a computer

together.

• A group of lines that serves as a connecting path for several devices is

called a bus.

• A bus that connects major components is called system bus.

• System bus is divided into three functional groups : Address bus , data

bus , control bus.

• Only two units can use bus structure at any point of time.

Types of Buses

• There are different 9 type of buses

 1) System bus

 2) Single bus

 3) Multiple Bus

 4) Internal bus

 5) External Bus

 6) I/O Bus

 7) Synchronous Bus

 8) Asynchronous Bus

 9) Back pane bus

Types of Buses
1)System Bus:

• System Bus Contains Data bus , Address Bus , Control Bus

Data Bus:

• Data bus consists of 8,16,32 or more parallel signal lines.

• These lines are used to send the data to memory and output ports and

to receive data from memory and input ports.

• It is a bi-directional bus.

Address Bus:

• It is an Unidirectional bus.

• The address bus consists of 16, 20, 24 or more parallel signal lines.

• The cpu sends out the address of the memory location or I/O ports that

is to be written to or read from.

Control Bus:

• The Control lines regulate the activity on the bus.

Ex: MEMW,MEMR,IOR,IOW,INTR etc….

2) Single-bus

Speed Issue
•Different devices have different transfer/operate speed.

•If the speed of bus is bounded by the slowest device connected to it, the

efficiency will be very low.

•How to solve this?

•A common approach – use buffers. to smooth timing differences

between devices. Ex: processor and printer data transfer.

Advantages:
•The main advantage of single bus structure is its low cost and flexibility

for attaching peripheral devices.

Figure 1.3. Single-bus structure.

MemoryInput Output Processor

3) Multiple Bus:

• Multiple bus Connection uses more number of different bus to

connect the components.

• Generally it uses local bus , system bus , expanded bus , high speed

bus.

• Multiple buses are used to transfer video and graphics type of data.

Internal Bus:

• An internal bus connects all the internal components of a computer to

the motherboard it is also called localbus.

• The internal bus of CPU connects the internal circuitry of the CPU.

External Bus:

• An External bus connects external peripherals to the mother boaed.

• Ex: USB.

I/O Bus:

• I/O bus is used to link between the processor and several peripherals .

Synchronous Bus:

• All devices derive timing information from a common clock signal

then synchronous bus is used.

Asynchronous Bus:

• All devices derive timing information from a independent clock signal

then Asynchronous bus is used.

Backplane Bus:

• A backplane or backplane system is a circuit board that connects

several connectors in parallel to each other.

• It s used as a back bone to connect several system modules to make

up a complete computer system.

Software
• To execute user application programs a computer contains a software

called system software.

• System software is a collection of programs that are executed to

perform functions like :

 1) Receiving and interpreting user commands.

 2) Entering and editing application programs and storing them as files

in secondary storage device.

 3) Managing the storage and retrieval of files in secondary storage

devices.

 4) Running Standard Application Programs such as Word processor ,

Spread Sheets or games with data supplied by the user.

 5) Controlling I/O Units to receive input information and produce

output results.

 6) translating programs from source form prepared by the user into

object form consisting of machine instructions.

Software
7) Linking and running user-written application programs with existing

standard library routines such as numerical computation programs.

• Text editor ,Compiler , operating system are examples of System

software.

• The operating system is used to manage the execution of more than

one application program at a time.

Ex:- How the operating system manages the execution of application

programs.

 1) Transfer the file into the memory.

 2) After Completion of transfer execution is started.

 3) When execution of program reaches the point where the data file is

needed , the program requests the operating system to transfer the data

file from the disk to memory and passes control back to application

program. Then proceed to perform the required computation.

 4) when the computation is completed the application program sends a

request to os .then os sends result to printer to print.

Software

Performance
• The most important measure of a computer is how quickly it can

execute programs.

• Three factors affect performance:

 - Hardware design

 - Instruction set

 - Compiler

• The time required to compute a total process is call elapsed time.

• The time that the processor execute the program is called processor

time.

• Elapsed time for the execution of a program depends on all units in a

computer system.

Performance

•The processor time depends on the hardware involved in the execution

of individual machine instruction.

Processor Clock
• Processor circuits are controlled by a timing signal called a clock.

• The clock defines regular timing intervals , called clock cycles.

• To execute any machine instruction the processor divide the

instruction into a sequence of basic steps ,such that each step can be

completed in one clock cycle.

• Clock rate R=1/p here p is clock cycle length.

• Clock speed is measured in hertz(Hz)

Performance

Basic Performance Equation:

• T – processor time required to execute a program that has
been prepared in high-level language

• N – number of actual machine language instructions needed
to complete the execution (note: loop)

• S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

• R – clock rate

• Note: these are not independent to each other

How to improve T?

Performance

R

SN
T




• T is difficult to compute.

• Measure computer performance using benchmark programs.

 Ex: database ,compiler , game playing.

• System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

• Reference computers like SPEC95 , SUN SPARC , SPEC2000.

 Running Time on the reference Computer

 SPEC rating=

 Running Time on the computer under test

 n 1/n

 SPEC Rating=(SPECi)

 i=1

• n is the number of programs in the suite.

Performance Measurement

Amdahl’s Law

• Amdahl’a law is used to calculate the performance gain that can be

obtained by improving some portion of a computer.

 Performance for entire task using improved machine

 Speed up=

 Performance for entire task using old machine

 (or)

 Execution time for entire task using improved machine

Speed up =

 Execution time for entire task using original machine

Fraction Enhanced(Fe):

• It is the fraction of the computation time in the original machine that

can be converted to take advantage of the enhancement.

• Fe is always <=1.

Speedup Enhanced(Se):

• It tells how much faster the task would run if the enhancement mode

was use for the entire program.

• Speed up enhancement is always >1.

 Execution Time old ETO

Speedup = =

 Execution Time new ETN

Amdahl’s Law

Amdahl’s Law

Multiprocessors and Multicomputers

Multiprocessor computer

– Execute a number of different application tasks in parallel

– Execute subtasks of a single large task in parallel

– All processors have access to all of the memory – shared-memory

multiprocessor

– Cost – processors, memory units, complex interconnection

networks

Multicomputers

– Each computer only have access to its own memory

– Exchange message via a communication network – message-

passing multicomputers

DATA REPRESENTATION

• Information that a Computer is dealing with

 * Data

 - Numeric Data

 Numbers(Integer, real)

 - Non-numeric Data

 Letters, Symbols

 * Relationship between data elements

 - Data Structures

 Linear Lists, Trees, Rings, etc

 * Program(Instruction)

NUMERIC DATA REPRESENTATION

Radix point(.) separates the integer

portion and the fractional portion

•Number System

 Nonpositional number system

 - Roman number system

 Positional number system

 - Each digit position has a value called a weight

 associated with it

 - Decimal, Octal, Hexadecimal, Binary
•Base (or radix) R number
 - Uses R distinct symbols for each digit
 - Example AR = an-1 an-2 ... a1 a0 .a-1…a-m

 - V(AR) =

R = 10 Decimal number system, R = 2 Binary

R = 8 Octal, R = 16 Hexadecimal






1n

mi

i

i Ra

Decimal Number System

– The decimal number system in every day use employs the radix

 10 system.

– The 10 symbols are 0,1,2,3,4,5,6,7,8 and 9.

– The string of digits 834.5 is interpreted as:

 8X102 + 3X101 + 4X100+5X10-1 =834.5

Binary Number System

– Binary number system uses the radix 2.

– The two digit symbols used are 0 and 1.

– The string of symbols 1001 is interpreted as:

 1 x 23 + 0 x 22 + 0 x 21 + 1 x 20 =8+0+0+1=9

NUMERIC DATA REPRESENTATION

Octal Number System

– Octal Number System uses radix 8.

– The Symbols used to represent the octal number system is

0,1,2,3,4,5,6 and 7.

– The octal number is converted into decimal number system by

forming the sum of the weighted digits.

 Ex:

 (736.4) 8= ?

 = 7 x 82 + 3 x 81 + 6 x 80 +4 x 8-1

 = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 =(478.5)10

NUMERIC DATA REPRESENTATION

Hexadecimal Number System

– The hexadecimal number system uses radix 16.

– The symbols used to represent the hexadecimal number system is

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F.

– The hexadecimal number is converted into decimal number system

by forming the sum of the weighted digits.

 Ex:

 (F3)16 = ?

 = F x 161 + 3 x160

 = 15 x 16 + 3=(243)10

NUMERIC DATA REPRESENTATION

Decimal to Other Number Systems

• Conversion from decimal to its equivalent representation in the radix

r system is carried our by separating the number into its integer part

and fraction part and converting each part separately.

• The conversion of a decimal integer into a base r representation is

done by successive divisions by r and accumulation of the reminders.

• The conversion of a decimal fraction to radix r representation is

accomplished by successive multiplication by r and accumulation of

the integer digits obtained.

NUMERIC DATA REPRESENTATION

Decimal to Binary Conversion:

 Ex: (41.6875) 10 =(101001.1011)2

Integer = 41

41

20 1

10 0

 5 0

 2 1

 1 0

 0 1

Fraction = 0.6875

0.6875

x 2

1.3750

x 2

0.7500

x 2

1.5000

 x 2

1.0000

(41)10 = (101001)2 (0.6875)10 = (0.1011)2

Binary to Octal and Hexadecimal Conversion

• Each octal digit corresponds to three binary numbers i.e 8=23.

• Each hexadecimal digit corresponds to four binary numbers i.e 16=24.

BCD:
– BCD is used to represent the decimal numbers system to binary

number system

Binary, octal, and hexadecimal conversion

1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1

1 2 7 5 4 3

A F 6 3

Octal

Binary

Hexa

COMPLEMENT OF NUMBERS
Two types of complements for base R number system:

 1) (R-1)'s complement

 2) R's complement

1) The (R-1)'s Complement

 - Number N in base r having n digits (r-1)’s complement is defined
as (rn -1) – N.

 - Subtract each digit of a number from (R-1)

Example

 - 9's complement of 83510 is 16410

 - 1's complement of 10102 is 01012(bit by bit complement operation)

2) The R's Complement

 - The r’s complement of an n-digit number N in base r is defined as
rn-N for N is not 0.

 - Add 1 to the low-order digit of its (R-1)'s complement

Example

 - 10's complement of 83510 is 16410 + 1 = 16510

 - 2's complement of 10102 is 01012 + 1 = 01102

COMPLEMENT OF NUMBERS

Subtraction of unsigned numbers

• The subtraction of two n-digit unsigned numbers M-N (N is not

zero)in base r can be done as follows:

 1) Add the minuend M to the r’s complement of the subtrahend N.this

 performs M+(rn-N)=M-N+rn .

 2) If M>=N , the sum will produce an end carry rn

 which is discarded , and what is left is the result of M-N.

 3) If M<N , the sum does not produce an end carry and is equal to

rn-(N-M), which is the r’s complement of (N-M).To obtain the

answer in familiar form ,take the r’s complement of the sum and place

a negative sign in front.

Example:

 M=72532 N=13250

 Here M>N

 75532

10’s Complement of N 86750

 159282

Subtraction of unsigned numbers

End Carry Discard

Example2:

 M<N

 M=13250 N=72532

 M= 13250

 10’s complement of N= 27468

 Sum = 40718

 Answer is Negative 59282 =10’s complement of 40718

Subtraction of unsigned numbers

Example 3:

 X=1010100 Y=1000011

 X= 1010100

 2’s Complement of Y= 0111101

 Sum= 10010001

 Answer of X-Y = 0010001

Subtraction of unsigned numbers

Example 4:

 X= 1010100 Y=1000011

 Y= 1000011

2’s Complement of X= 0101100

 Sum = 1101111

 There is no End Carry.

 Answer is negative 0010001 = 2’ Complement of 1101111

Subtraction of unsigned numbers

Fixed Point Representation

• Positive integers , including zero ,can be represented as unsigned

numbers.

• The positive sign is represented as 0 and 1 for negative.

• The binary point is used to represent fractions ,integers , and mixed

integer and fractions.

• There are two ways of specifying the position of the binary point in a

register

 - By giving it a fixed point representation

 - By employing a floating point representation

• The fixed point method assumes that the binary point is always fixed

in one position.

• The two positions most widely used are:

 1) Binary point extreme left of the register

 2) Binary point extreme right of the register

Integer Representation

• When a binary number is positive the sign is represented by 0 and the

magnitude by a binary positive number.

• When the number is negative the sign is represented by 1 and the rest

of the number may be represented in one of the three ways:

 1) Signed magnitude representation

 2) Signed 1's complement representation

 3) Signed 2's complement representation

 Example: Represent +9 and -9 in 7 bit-binary number

 Only one way to represent +9 ==> 0 001001

 Three different ways to represent -9:

 In signed-magnitude: 1 001001

 In signed-1's complement: 1 110110

 In signed-2's complement: 1 110111

Fixed Point Representation

• Complement

 - Signed magnitude: Complement only the sign bit

 - Signed 1's complement: Complement all the bits

 including sign bit

 - Signed 2's complement: Take the 2's complement of the

 number, including its sign bit.

Fixed Point Representation

Arithmetic Addition in Signed Magnitude

Rules

 1 . Compare their signs

 2 . If two signs are the same ,

 ADD the two magnitudes - Look out for an overflow

 3 . If not the same , compare the relative magnitudes of the numbers

 and then SUBTRACT the smaller from the larger .

 4 . Determine the sign of the result

Note: 1) The operation performed always addition including sign bit.

 2) any carry out of sign bit is discarded.

 3) Negative results are always in 2s complement form.

Fixed Point Representation

Example:

 + 6 00000110 -6 11111010

 +13 00001101 +13 00001101

 +19 00010011 +7 00000111

 +6 00000110 -6 11111010

 -13 11110011 -13 11110011

 -7 11111001 -19 11101101

Fixed Point Representation

Arithmetic Subtraction

Rules:

 1) To perform subtraction of two signed binary numbers take the 2’s

complement of the subtrahend (including sign bit) and add it to the

minuend(including the sign bit) .

 2) Discard the carry out of the sign bit position.

• The subtraction operation can be changed to addition if the sign of the

subtrahend is changed.

 ( A) - (- B) = ( A) + (+B)

 ( A) - (+B) = ( A) + (- B)

Fixed Point Representation

Arithmetic Subtraction

Example:

 (-6) – (-13)=+7

 take the 2’complement of -13 i.e +13=00001101

 -6 11111010

 +13 00001101

 +7 100000111

 Remove the End carry i.e 00000111=+7

Fixed Point Representation

Overflow
• When two numbers of n digits each are added and then the sum

occupies n+1 digits then we call overflow occurred.

• An overflow is a problem in digital computers because the width of a

register is finite.

• Because of this reason many computes detect the occurrence of

overflow problem and set a overflow flip flop.

• When two numbers are added the overflow is detected by using an

end carry.

• An overflow can not occur after an addition if one number is positive

and the other is negative .

• An overflow may occur if the two numbers added are both positive or

both negative.

Fixed Point Representation

Example :

 carries : 0 1 carries: 1 0

 +70 0 1000110 -70 1 0111010

 +80 0 1010000 -80 1 0110000

 +150 1 0010110 -150 0 1101010

Overflow Detection

• An overflow is detected by observing the carry into the sign bit

position and the carry out of the sign bit position.

• If these two carries are not equal an overflow is occurred.

• If the two carries are applied to an exclusive-OR gate, an overflow

will be detected when the output of the gate is equal to 1.

Fixed Point Representation

Floating-point Representation

• The floating-point representation of a number has two parts.

 - The first part represents a signed , fixed-point number called

 mantissa .

 - The second part designates the position of the decimal(or) binary

 point and is called the exponent.

 m X re

• The fixed point mantissa may be a fraction or an integer.

Example:

 +6132.789 is represented in floating point as :

 fraction=+0.613789 exponent= +04

• A floating point binary number +10011.11 is represented as:

 Fraction=01001111 Exponent=000101

Normalization:

• A floating point number is said to be normalized if the most

significant digit of the mantissa is nonzero.

• The number can be normalized by shifting it three positions to the left

and discarding the leading 0’s.

Example:

 - 00011010 is normalized as 11010000

• In the above example the three shifts multiply the number by 23 =8 to

keep the same number the exponent must be subtracted by 3.

Floating-point Representation

• There are two standards to represent floating point numbers:1)ANSI

2)IEEE

• The ANSI 32 bit format is represented As:

 Byte Format:

 Byte1 Byte2 Byte3 Byte4

SEEEE .IMMMMMMM MMMMMMMM MMMMMMMM

S=Sign of Mantissa E=Exponent Bits in 2’s complement M=Mantissa

Ex: 13=1101=0.1101X24

 =00000100 11010000 00000000 00000000

-17=-10001=-0.10001X25 =10000101 10001000 00000000 00000000

-0.125=-0.001=-1X2-2=11111110 10000000 00000000 00000000

Floating-point Representation

Binary Point Mantissa Exponent

Error Detection Codes
Parity System

 - Simplest method for error detection

 - One parity bit attached to the information

 - Even Parity and Odd Parity

• Even Parity

 - One bit is attached to the information so that

 the total number of 1 bits is an even number

 1011001 0

 1010010 1

• Odd Parity

 - One bit is attached to the information so that

 the total number of 1 bits is an odd number

 1011001 1

 1010010 0

Error Detection Codes

Fig: Error Detection With Odd Parity Bit

UNIT-II

67

Fundamentals of Boolean Algebra

68

• Basic Postulates
• Postulate 1 (Definition): A Boolean algebra is a closed algebraic system

containing a set K of two or more elements and the two operators  and +.
• Postulate 2 (Existence of 1 and 0 element):

(b) a  1 = a (identity for )

(b) a  b = b  a

(b) a (bc) = (ab) c

(a) a + 0 = a (identity for +),
• Postulate 3 (Commutativity):

(a) a + b = b + a,
• Postulate 4 (Associativity):

(a) a + (b + c) = (a + b) + c
• Postulate 5 (Distributivity):

(a) a + (bc) = (a + b) (a + c) (b) a (b + c) = ab + ac
• Postulate 6 (Existence of complement):

(a) (b)

• Normally  is omitted.
a  a  1

a  a  0

Fundamentals of Boolean Algebra

69

• Fundamental Theorems of Boolean Algebra

(b) aa = a

(b) a0 = 0

• Properties of 0 and 1 elements (Table 2.1):

OR AND Complement
a + 0 = 0 a0 = 0 0' = 1
a + 1 = 1 a1 = a 1' = 0

• Theorem 1 (Idempotency):
(a) a + a = a

• Theorem 2 (Null element):
(a) a + 1 = 1

• Theorem 3 (Involution)
a  a

Fundamentals of Boolean Algebra (3)

70

• Theorem 4 (Absorption)
(a) a + ab = a (b) a(a + b) = a

• Examples:
– (X + Y) + (X + Y)Z = X + Y
– AB'(AB' + B'C) = AB'

• Theorem 5
(a) a + a'b = a + b (b) a(a' + b) = ab

• Examples:
– B + AB'C'D = B + AC'D
– (X + Y)((X + Y)' + Z) = (X + Y)Z

Fundamentals of Boolean Algebra (4)

71

• Theorem 6
(a) ab + ab' = a (b) (a + b)(a + b') = a

• Examples:
– ABC + AB'C = AC
– (W' + X' + Y' + Z')(W' + X' + Y' + Z)(W' + X' + Y + Z')(W' +
X' + Y + Z)
= (W' + X' + Y')(W' + X' + Y + Z')(W' + X' + Y + Z)
= (W' + X' + Y')(W' + X' + Y)

= (W' + X')

Fundamentals of Boolean Algebra (5)

72

• Theorem 7

(a) ab + ab'c = ab + ac (b) (a + b)(a + b'
+ c) = (a + b)(a + c)

• Examples:
– wy' + wx'y + wxyz + wxz' = wy' + wx'y + wxy + wxz‘
= wy' + wy + wxz'

= w + wxz'

= w

– (x'y' + z)(w + x'y' + z') = (x'y' + z)(w + x'y')

Fundamentals of Boolean Algebra (6)

73

• Theorem 8 (DeMorgan's Theorem)
(a) (a + b)' = a'b' (b) (ab)' = a' + b'

• Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z' (b) (ab … z)' = a' + b' + … z'

• Examples:
– (a + bc)' = (a + (bc))'

= a'(bc)'
= a'(b' + c')
= a'b' + a'c'

Note: (a + bc)'  a'b' + c'

Logic Gates

74

• Electrical Signals and Logic Values

– A signal that is set to logic 1 is said to be asserted,
active, or true.

– An active-high signal is asserted when it is high
(positive logic).
– An active-low signal is asserted when it is low

(negative logic).

Electric Signal Logic Value

Positive Logic Negative Logic

High Voltage (H) 1 0

Low Voltage (L) 0 1

AND

– Logic notation AB = C

(Sometimes AB = C)

75

A B C

0 0 0

0 1 0

1 0 0

1 1 1

OR

– Logic notation A + B = C

A B C

0 0 0

0 1 1

1 0 1

1 1 1

10

Inversion (NOT)

77

A Q

0 1

1 0 Logic: Q  A

Exclusive OR (XOR)

78

Either A or B, but not both

This is sometimes called the inequality
detector, because the result will be 0
when the inputs are the same and 1 when
they are different.

The truth table is the same as for S
on Binary Addition. S = A  B

A B S

0 0 0

1 0 1

0 1 1

1 1 0

UNIVERSAL GATES

79

NAND (NOT AND)

80

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

Q  A B

Basic Functional Components

81

• AND, OR, and NOT gates constructed
exclusively from NAND gates

fNAND(a, b)  a  b  a  b  fOR(a, b)

Hence, NAND gate may be used to implement all three elementary operators.

fNAND(a, b)  a  b  a  b  fAND(a, b)

fNAND(a, a)  a  a  a  fNOT (a)

a

b

a b
 f(a, b) = a b = a b

A N D g a t e N O T g a t e

 f(a, b) = a + b = a + b

a a

b

b

O R g a t e

a f(a, a) = aa = a

NOR (NOT OR)

82

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Q  A  B

Basic Functional Components

83

• AND, OR, and NOT gates constructed exclusively from NOR gates.

a

b

O R g a t e N O T g a t e

a a

b

b

A N D g a t e

 f(a, b) = a + b a f(a, a) = a + a = a
a + b

 f(a, b) = a b = a b

fNOR(a, b)  a  b  a  b  fOR(a, b)

fNOR(a, a)  a  a  a  fNOT (a)

fNOR(a, b)  a  b  a  b  fAND(a, b)

Hence, NOR gate may be used to implement all three elementary operators.

Summary

84

Summary for all 2-input gates

Inputs Output of each gate

A B AND NAND OR NOR XOR XNOR

0 0 0 1 0 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 0 1 0 0 1

MINIMIZATON OF LOGIC EXPRESSION

85

• Goal -- minimize the cost of realizing a switching function

• Cost measures and other considerations
– Number of gates

– Number of levels

– Gate fan in and/or fan out

– Interconnection complexity

– Preventing hazards

• Two-level realizations
– Minimize the number of gates (terms in switching function)

– Minimize the fan in (literals in switching function)

• Commonly used techniques
– Boolean algebra postulates and theorems

– Karnaugh maps

Simplification Using Boolean Algebra

• A simplified Boolean expression uses the
fewest gates possible to implement a given
expression.

A

20

B

C

AB+A(B+C)+B(B+C)

Simplification Using Boolean Algebra

87

• AB+A(B+C)+B(B+C)

– (distributive law)

• AB+AB+AC+BB+BC

– (BB=B)

• AB+AB+AC+B+BC

– (AB+AB=AB)

• AB+AC+B+BC

– (B+BC=B)

• AB+AC+B

– (AB+B=B)

• B+AC

B

A

C

B+AC

A

B
C AB+A(B+C)+B(B+C)

Simplification Using Boolean Algebra

88

• Try these:

[AB (C  BD)  AB]C

ABC  ABC  ABC  ABC  ABC AB

 AC  ABC



Standard Forms of Boolean Expressions

89

• All Boolean expressions, regardless of their
form, can be converted into either of two
standard forms:

– The sum-of-products (SOP) form

– The product-of-sums (POS) form

• Standardization makes the evaluation,
simplification, and implementation of Boolean
expressions much more systematic and easier.

The Sum-of-Products (SOP) Form

• An SOP expression
 when two or
more product terms
are summed by
Boolean addition.
– Examples:

AB  ABC

ABC  CDE  BCD AB 

ABC  AC

– Also:

A  ABC  BCD

90

 In an SOP form, a

single overbar cannot

extend over more than

one variable; however,

more than one variable

in a term can have an

overbar:

 example: is OK! ABC

But not: ABC

Converting Product Terms to Standard SOP

91

• Step 1: Multiply each nonstandard product term by a
term made up of the sum of a missing variable and
its complement. This results in two product terms.

– As you know, you can multiply anything by 1 without
changing its value.

• Step 2: Repeat step 1 until all resulting product term
contains all variables in the domain in either
complemented or uncomplemented form. In
converting a product term to standard form, the
number of product terms is doubled for each missing
variable.

Converting Product Terms to Standard SOP
(example)

92

 ABCD  ABCD  ABCD  ABCD  ABC D ABCD  ABCD ABC  AB  ABC D 

ABCD  ABCD  ABCD  ABCD ABC(D  D)  ABC (D  D) 

• Convert the following Boolean expression into
standard SOP form:

ABC  AB  ABCD

ABC  ABC(D  D)  ABCD  ABCD AB  AB (C  C)  ABC  ABC



The Product-of-Sums (POS) Form

 In a POS form, a
single overbar cannot
extend over more
than one variable;
however, more than
one variable in a term
can have an overbar:

example: A  B  C is OK!

93



 But not: A  B  C

• When two or more sum
terms are multiplied, the
result expression is a
product- of-sums (POS):

– Examples:

(A  B)(A  B  C)

(A  B  C)(C  D  E)(B  C  D) (A 

B)(A  B  C)(A  C)

–AAls(oA:  B  C)(B  C 

D)

Converting a Sum Term to Standard POS

94

• Step 1: Add to each nonstandard product
term a term made up of the product of the

missing variable and its complement. This
results in two sum terms.

– As you know, you can add 0 to anything without
changing its value.

• Step 2: Apply rule  A+BC=(A+B)(A+C).
• Step 3: Repeat step 1 until all resulting sum

terms contain all variable in the domain in
either complemented or uncomplemented
form.

Converting a Sum Term to Standard POS
(example)

95

• Convert the following Boolean expression into
standard POS form:

(A  B  C)(B  C  D)(A  B  C  D)

A  B  C  A  B  C  DD  (A  B  C  D)(A  B  C 

D)

B  C  D  B  C  D  AA  (A  B  C  D)(A  B  C 

D) (A  B  C)(B  C  D)(A  B  C  D) 
(A  B  C  D)(A  B  C  D) (A  B  C  D)(A  B  C  D) (A  B  C  D)

30

Boolean Expressions & Truth Tables

• All standard Boolean expression can be easily
converted into truth table format using binary
values for each term in the expression.

• Also, standard SOP or POS expression can be
determined from the truth table.

Converting SOP Expressions to Truth Table
Format

97

• Recall the fact:

– An SOP expression is equal to 1 only if at least one of the
product term is equal to 1.

• Constructing a truth table:

– Step 1: List all possible combinations of binary values of
the variables in the expression.

– Step 2: Convert the SOP expression to standard form if it is
not already.

– Step 3: Place a 1 in the output column (X) for each binary
value that makes the standard SOP expression a 1 and
place 0 for all the remaining binary values.

Converting SOP Expressions to Truth Table
Format (example)

98

• Develop a truth table
for the standard SOP
expression

ABC  ABC  ABC

Inputs Output P r o d u

c t

Term
A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Inputs Output P r o d u

c t

Term
A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ABC

ABC

ABC

Inputs Output P r o d u

c t

Term
A B C X

0 0 0

0 0 1 1

0 1 0

0 1 1

1 0 0 1

1 0 1

1 1 0

1 1 1 1

ABC

ABC

ABC

Inputs Output P r o d u

c t

Term
A B C X

0 0 0 0

0 0 1 1 ABC
0 1 0 0

0 1 1 0

1 0 0 1 ABC
1 0 1 0

1 1 0 0

1 1 1 1 ABC

Converting POS Expressions to Truth Table
Format

99

• Recall the fact:

– A POS expression is equal to 0 only if at least one of the
product term is equal to 0.

• Constructing a truth table:

– Step 1: List all possible combinations of binary values of
the variables in the expression.

– Step 2: Convert the POS expression to standard form if it is
not already.

– Step 3: Place a 0 in the output column (X) for each binary
value that makes the standard POS expression a 0 and
place 1 for all the remaining binary values.

Converting POS Expressions to Truth Table
Format (example)

100

• Develop a truth table
for the standard SOP
expression

(A  B  C)(A  B  C)(A  B  C)

(A  B  C)(A  B  C)

Inputs Output P r o d u

c t

Term
A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Inputs Output P r o d u

c t

Term
A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

(A  B  C)

(A  B  C)

(A  B  C)

(A  B  C)

(A  B  C)

Inputs Output P r o d u

c t

Term
A B C X

0 0 0 0

0 0 1

0 1 0 0

0 1 1 0

1 0 0

1 0 1 0

1 1 0 0

1 1 1

(A  B  C)

(A  B  C)

(A  B  C)

(A  B  C)

(A  B  C)

Inputs Output P r o d u

c t

Term

A B C X

0 0 0 0 (A  B  C)

0 0 1 1

0 1 0 0 (A  B  C)

0 1 1 0 (A  B  C)

1 0 0 1

1 0 1 0 (A  B  C)

1 1 0 0 (A  B  C)

1 1 1 1

Determining Standard Expression from a
Truth Table

101

• To determine the standard SOP expression
represented by a truth table.

• Instructions:

– Step 1: List the binary values of the input variables for
which the output is 1.

– Step 2: Convert each binary value to the corresponding
product term by replacing:

• each 1 with the corresponding variable, and

• each 0 with the corresponding variable complement.

• Example: 1010 ABCD

Determining Standard Expression from a
Truth Table

102

• To determine the standard POS expression
represented by a truth table.

• Instructions:

– Step 1: List the binary values of the input variables for
which the output is 0.

– Step 2: Convert each binary value to the corresponding
product term by replacing:

• each 1 with the corresponding variable complement, and

• each 0 with the corresponding variable.

• Example: 1001  A  B  C  D

The Karnaugh Map

103

• Feel a little difficult using Boolean algebra
laws, rules, and theorems to simplify logic?

• A K-map provides a systematic method for
simplifying Boolean expressions and, if
properly used, will produce the simplest SOP
or POS expression possible, known as the
minimum expression.

What is K-Map

104

• It’s similar to truth table; instead of being organized
(i/p and o/p) into columns and rows, the K-map is an
array of cells in which each cell represents a binary
value of the input variables.

• The cells are arranged in a way so that simplification
of a given expression is simply a matter of properly
grouping the cells.

• K-maps can be used for expressions with 2, 3, 4, and
5 variables.

The 3 Variable K-Map

105

Or
01

11

10

• There are 8 cells as shown:

C
0 1

AB

00 ABC ABC

ABC ABC

ABC ABC

ABC ABC
ABC

A 00 01 11 10

0 ABC ABC ABC

1 ABC ABC ABC ABC

The 4-Variable K-Map

00 01 11 10
CD

AB

00

01

11

10

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

40

K-Map SOP Minimization

107

• The K-Map is used for simplifying Boolean
expressions to their minimal form.

• A minimized SOP expression contains the
fewest possible terms with fewest possible
variables per term.

• Generally, a minimum SOP expression can be
implemented with fewer logic gates than a
standard expression.

Karnaugh Maps (K-maps)

108

• If mi is a minterm of f, then place a 1 in cell i
of

the K-map.

• If Mi is a maxterm of f, then place a 0 in cell i.

• If di is a don’t care of f, then place a d or x in

cell i.

Examples

109

• Two variable K-map
f(A,B)=m(0,1,3)=A`B`+A`B+AB

1 0

1 1

A 0 1 B

0

1

Grouping the 1s (rules)

110

1. A group must contain either 1,2,4,8,or 16 cells
(depending on number of variables in the expression)
2. Each cell in a group must be adjacent to one or

more cells in that same group, but all cells in the
group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in
a group in accordance with rule 1.

4. Each 1 on the map must be included in at least one
group. The 1s already in a group can be included in
another group as long as the overlapping groups
include noncommon 1s.

Determining the Minimum SOP Expression
from the Map

111

2. Determine the minimum product term for each
group.
• For a 3-variable map:

1. A 1-cell group yields a 3-variable product term

2. A 2-cell group yields a 2-variable product term

3. A 4-cell group yields a 1-variable product term

4. An 8-cell group yields a value of 1 for the expression.

• For a 4-variable map:
1. A 1-cell group yields a 4-variable product term

2. A 2-cell group yields a 3-variable product term

3. A 4-cell group yields a 2-variable product term

4. An 8-cell group yields a a 1-variable product term

5. A 16-cell group yields a value of 1 for the expression.

Determining the Minimum SOP Expression
from the Map (example)

112

CD

AB
00

01 11 10

00 1 1

01 1 1 1 1

11 1 1 1 1

10 1

AC

B

ACD

B  AC  ACD

Three-Variable K-
Maps

113

f   (0,4)  B C f   (4,5)  A B f   (0,1,4,5)  B f   (0,1,2,3)  A

BC

0

1

00 01 11 10 A
1 0 0 0

1 0 0 0

BC

0

1

00 01 11 10 A
0 0 0 0

1 1 0 0

BC

0

1

00 01 11 10 A
1 1 1 1

0 0 0 0

BC

0

1

00 01 11 10 A
1 1 0 0

1 1 0 0

f   (0,4)  A C f   (4,6)  A C f   (0,2)  A C f   (0,2,4,6)  C

BC

0

1

00 01 11 10 A
0 1 1 0

0 0 0 0

BC

0

1

00 01 11 10 A
0 0 0 0

1 0 0 1

BC

0

1

00 01 11 10 A
1 0 0 1

1 0 0 1

BC

0

1

00 01 11 10 A
1 0 0 1

0 0 0 0

Three-Variable K-Map Examples

114

• We can write any way either AB and C or A BC

00 01 11 10 A

BC BC

0 0

1 1

00 01 11 10 A

BC

0

1

00 01 11 10 A

BC

0

1

00 01 11 10 A

BC

0

1

00 01 11 10 A

BC

0

1

00 01 11 10 A

1

1 1 1

1 1 1

1 1

1 1

1 1

1

1 1 1

1 1 1

1 1

Determining the Minimum SOP Expression
from the Map (exercises)

AB  AC  ABD D  ABC  BC

CD

AB 00 01 11 10
CD

AB 00 01 11 10

00 1 1 00 1 1

01 1 1 1 1 01 1 1 1

11 11 1 1 1

10 1 1 10 1 1 1

49

Four-Variable K-Maps

116

CD
00 01 11 10

00

01

11

10

AB
0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

CD
00 01 11 10

AB

00

01

11

10

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

CD
00 01 11 10

AB

00

01

11

10

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

CD
00 01 11 10

AB

00

01

11

10

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

CD
00 01 11 10

00

01

11

10

AB
0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

CD
00 01 11 10

AB

00

01

11

10

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

CD
00 01 11 10

AB

00

01

11

10

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

CD
00 01 11 10

AB

00

01

11

10

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

f   (4, 5, 6, 7)  A  B f  (3, 7,11,15)  C D
f   (0, 3, 5, 6, 9,10,12,15)

f  A  B  C  D

f   (1, 2, 4, 7,8,11,13,14)

f  A  B  C  D

f  (1, 3,5, 7, 9,11,13,15)

f  D

f   (0,2,4,6,8,10,12,14)

f  D

f   (4,5,6,7,12,13,14,15)

f  B
f   (0,1,2,3,8,9,10,11)

f  B

Practicing K-Map (SOP)

117

BCD  ABCD  ABC D  ABCD  ABCD 

ABCD  ABCD  ABCD  ABCD

ABC  ABC  ABC  ABC  ABC

B  AC

D  BC

Mapping Directly from a Truth Table

118

I/P O/P

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

C
0 1

AB

00

01

11

10

1

1

1

1

“Don’t Care” Conditions

119

• Sometimes a situation arises in which some input
variable combinations are not allowed, i.e. BCD code:

– There are six invalid combinations: 1010, 1011, 1100, 1101,
1110, and 1111.

• Since these unallowed states will never occur in an
application involving the BCD code  they can be
treated as “don’t care” terms with respect to their
effect on the output.

• The “don’t care” terms can be used to advantage on
the K-map (how? see the next slide).

“Don’t Care” Conditions

120

INPUTS O/P

A B C D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

00 01 11 10

1

CD AB

00

01

11 x x x

 x

10 1 1 x

 x
Without “don’t care”

Y  ABC  ABCD

With “don’t care”
Y  A  BCD

C
0 1

AB

00

01

11

10

Mapping a Standard POS Expression (full
example)

121

The expression:

(A  B  C)(A  B  C)(A  B  C)(A  B  C)

000 010 110 101

0

0

0

0

Combinational Circuits

122

123

Designing Combinational Circuits

124

In general we have to do following steps:

1. Problem description

2. Input/output of the circuit

3. Define truth table

4. Simplification for each output

5. Draw the circuit

Decoder

125

• Is a combinational circuit that converts binary information
from n input lines to a maximum of 2n unique output lines For

example if the number of input is n=3 the number of output
lines can be m=23 . It is also known as 1 of 8 because one

output line is selected out of 8 available lines:

3 to 8
decoder

enable

60

Decoder with Enable Line

127

• Decoders usually have an enable line,

• If enable=0 , decoder is off. It means all output
lines are zero

• If enable=1, decoder is on and depending on
input, the corresponding output line is 1, all
other lines are 0

• See the truth table in next slide

Truth table for decoder

128

E a2 a1 a0 D7 D6 D5 D4 D3 D2 D1 D0

0 x x x 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1

1 ……………………………………….

1 ……………………………………..

1

1

1 1 1 1 1 0 0 0 0 0 0 0

129

Major application of Decoder

130

• Decoder is use to implement any combinational cicuits (fn)

For example the truth table for full adder is s (x,y,z) = ∑ (1,2,4,7)

and C(x,y,z)= ∑ (3,5,6,7). The implementation with decoder is:

Multiplexer

131

• It is a combinational circuit that selects binary
information from one of the input lines and directs it
to a single output line

• Usually there are 2n input lines and n selection lines
whose bit combinations determine which input line
is selected

• For example for 2-to-1 multiplexer if selection S is
zero then I0 has the path to output and if S is one I1

has the path to output (see the next slide)

2-to-1 multiplexer

132

133

Boolean function Implementation

134

• Another method for implementing boolean
function is using multiplexer
• For doing that assume boolean function has n

variables. We have to use multiplexer with n-1
selection lines and

• 1- first n-1 variables of function is used for data
input

• 2- the remaining single variable (named z)is used
for data input. Each data input can be z, z’, 1 or 0.
From truth table we have to find the relation of F
and z to be able to design input lines. For example :
f(x,y,z) = ∑(1,2,6,7)

135

F A,B,C,D = ∑(1,3,4,11,12,13,14,15)

70

Prgrammable Logic Organization

137

• Pre-fabricated building block of many AND/OR gates (or NOR, NAND)
• "Personalized" by making or breaking connections among the gates

Programmable Array Block Diagram for Sum of Products Form

Inputs

Dense array of

AND gates Product
terms

Dense array of

OR gates

Outputs

Basic Programmable
Logic

Organizations

138

• Depending on which of the AND/OR logic
arrays is programmable, we have three basic
organizations

ORGANIZATION AND ARRAY OR ARRAY

PAL PROG. FIXED

PROM FIXED PROG.

PLA PROG. PROG.

PLA Logic Implementation

139

Example:

Personality Matrix

Key to Success: Shared Product Terms

Input Side:

1 = asserted in term
0 = negated in term
- = does not participate

Output Side:

1 = term connected to output 0
= no connection to output

Reuse
of

terms

Product
term

I
n

A

pu

B

ts

C

O
F
0

utputs
F 1

F 2

F 3

A B 1 1 - 0 1 1 0

B C - 0 1 0 0 0 1

A C 1 - 0 0 1 0 0

B C - 0 0 1 0 1 0

A 1 - - 1 0 0 1

Equations

F0 = A + B C
F1 = A C + A B
F2 = B C + A B
F3 = B C + A

PLA Logic Implementation

140

Example Continued - Unprogrammed device

All possible connections are available
before programming

A B C

F0 F1 F2 F3

Sequential Circuits

141

• Circuits require memory to store intermediate data

• Sequential circuits use a periodic signal to determine when to
store values.

– A clock signal can determine storage times

– Clock signals are periodic

• Single bit storage element is a flip flop

• A basic type of flip flop is a latch

• Latches are made from logic gates

– NAND, NOR, AND, OR, Inverter

The story so far
...

142

• Logical operations which respond to combinations of inputs
to produce an output.

– Call these combinational logic circuits.

• For example, can add two numbers. But:

– No way of adding two numbers, then adding a third (a
sequential operation);

– No way of remembering or storing information after inputs
have been removed.

• To handle this, we need sequential logic capable of storing
intermediate (and final) results.

Sequential
Circuits

143

Combinational

circuit
Flip

Flops

Outputs Inputs

Next

state Present

state

Timing signal

(clock)

Clock

Clock

a periodic external event (input)

synchronizes when current state changes happen
keeps system well-behaved

makes it easier to design and build large systems

Sequential Circuits: Flip flops

144

Overview

145

• Latches respond to trigger levels on control inputs

– Example: If G = 1, input reflected at output

• Difficult to precisely time when to store data with latches

• Flip flips store data on a rising or falling trigger edge.

– Example: control input transitions from 0 -> 1, data input
appears at output

– Data remains stable in the flip flop until until next rising
edge.

• Different types of flip flops serve different functions

• Flip flops can be defined with characteristic functions.

Q

C

Q’

D

D Latch
S’

R’

S

R

t

S R C Q Q’

0

0

1

1

0

1

0

1

1

1

1

1

Q0

0

1

1

Q0’ Store

1 Rese

1 Set

2 Disal lowed 0 0

0 1 0 1

1 1 1 0

X 0 Q Q ’

D C Q Q’

X X 0 Q0 Q0’ Store

• When C is high, D passes from input to output (Q)

80

Master-Slave D Flip
Flop

147

• Consider two latches combined together

• Only one C value active at a time

• Output changes on falling edge of the clock

D Flip-Flop

148

D gets latched to Q on the rising edge of the clock.

C

D Q

Q’

0 0 1

1

X

0

1

Q0

0

Q0’

• Stores a value on the positive edge of C

• Input changes at other times have no effect on output

Positive edge triggered

D C Q Q’

Clocked D Flip-Flop

149

• Stores a value on the positive edge of C

• Input changes at other times have no effect on output

Positive and Negative Edge D Flip-Flop

150

• D flops can be triggered on positive or negative edge

• Bubble before Clock (C) input indicates negative edge trigger

Lo-Hi edge Hi-Lo edge

Asynchronous Inputs

• J, K are synchronous inputs

151

o Effects on the output are synchronized with the CLK input.

• Asynchronous inputs operate independently of the synchronous
inputs and clock

o Set the FF to 1/0 states at any time.

Asynchronous Inputs

152

Asynchronous Inputs

153

•Note reset signal (R) for
D flip flop

•If R = 0, the output Q is
cleared

•This event can occur at
any time, regardless of the
value of the CLK

Parallel Data Transfer

154

• Flip flops store outputs from combinational logic

• Multiple flops can store a collection of data

Summary

155

• Flip flops are powerful storage elements

– They can be constructed from gates and latches!

• D flip flop is simplest and most widely used

• Asynchronous inputs allow for clearing and presetting the flip
flop output

• Multiple flops allow for data storage

– The basis of computer memory!

• Combine storage and logic to make a computation circuit

• Next time: Analyzing sequential circuits.

90

Counters
• Counters are important components in computers

– The increment or decrement by one in response to input

• Two main types of counters

– Ripple (asynchronous) counters

– Synchronous counters

• Ripple counters

– Flip flop output serves as a source for triggering other flip
flops

• Synchronous counters

– All flip flops triggered by a clock signal

• Synchronous counters are more widely used in industry.

157

Counters

•Counter: A register that goes through a prescribed series of
states

•Binary counter

– Counter that follows a binary sequence

– N bit binary counter counts in binary from n to 2n-1

•Ripple counters triggered by initial Count signal

•Applications:

– Watches

– Clocks

– Alarms

– Web browser refresh

Binary Ripple Counter

158

• Reset signal sets all outputs to 0

• Count signal toggles output of
low-order flip flop

• Low-order flip flop provides
trigger for adjacent flip flop

• Not all flops change value
simultaneously

– Lower-order flops change first
• Focus on D flip flop
implementation

Asynchronous Counters

159

• Each FF output drives the CLK input of the next FF.

• FFs do not change states in exact synchronism with the applied clock
pulses.

• There is delay between the responses of successive FFs.

• Ripple counter due to the way the FFs respond one after another in a
kind of rippling effect.

A3 A2 A1 A0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

1 0 0 0

 1 0 0 1

Synchronous counters

160

• Synchronous(parallel) counters

– All of the FFs are triggered
simultaneously by the clock
input pulses.

– All FFs change at same time

• Remember

– If J=K=0, flop maintains value

– If J=K=1, flop toggles

• Most counters are synchronous in
computer systems.

• Can also be made from D flops

• Value increments on positive edge

Synchronous counters

161

• Synchronous counters

– Same counter as previous slide except Count enable replaced by J=K=1

– Note that clock signal is a square wave

– Clock fans out to all clock inputs

Circuit operation

162

• Count value increments on each negative edge

• Note that low-order bit (A) toggles on each clock cycle

Registers

 Register
 Consists of N Flip-Flops
 Stores N bits
 Common clock used for all Flip-Flops

 Shift Register
 A register that provides the ability to shift its

contents (either left or right).
 Must use Flip-Flops

 Either edge-triggered or master-slave

 Cannot use Level-sensitive Gated Latches

163

Overview of Shift Registers

164

• A shift register is a sequential logic device

made up of flip-flops that allows parallel or

serial loading and serial or parallel outputs

as well as shifting bit by bit.

• Common tasks of shift registers:

– Serial/parallel data conversion

– Time delay

– Ring counter

– Twisted-ring counter or Johnson counter

– Memory device

Characteristics of Shift Registers

165

• Number of bits (4-bit, 8-bit, etc.)

• Loading

– Serial

– Parallel (asynchronous or synchronous)

• Common modes of operation.

– Parallel load

– Shift right-serial load

– Shift left-serial load

– Hold

– Clear

• Recirculating or non-recirculating

Serial/Parallel Data Conversion

Shift registers can be used to convert from serial-

to-parallel or the reverse from parallel-to-serial.

11 00 11 00 11 11 11 11 Serial in

Parallel out

Serial out
Serial out

1 0 1 0 1 1 1 1

Parallel in

Parallel out

100

UNIT-III

Computer Arithmetic

• The Basic arithmetic operations are:

 1. Addition 2. subtraction 3. Multiplication 4. Division.

• An arithmetic instruction may specify binary or decimal data , and in

each case the data may be in fixed point or floating point.

• The solution to any problem that is stated by a finite number of well

defined procedural steps is called an Algorithm.

• Here the arithmetic operation are implemented for the following data

types:

 1) Fixed point binary data in SMR

 2) Fixed point binary data in S2’s CR

 3) Floating point binary data

 4) Binary-coded decimal(BCD)

Addition and Subtraction

• There are three ways to represent negative fixed point binary
numbers.

 1)SMR 2)Signed 1’S Comp 3)Signed 2’s Comp

• Floating point operations most of the computers use signed
magnitude representation for the mantissa.

Addition Algorithm

• when the signs of A and B are identical add the two magnitudes
and attach the sign of A to the result.

• When the signs of A and B are different compare the
magnitudes and subtract the smaller number from the larger.
Choose the sign of the result to be the same as A if A>B or the
complement of the sign of A if A<B .if the two magnitudes are
equal subtract b from a and make the sign of the result positive.

Addition and Subtraction

 Table : Addition and Subtraction of Signed Magnitude Numbers

Operation Add Magnitudes Subtract Magnitudes

When A>B When A<B When A=B

(+A)+(+B) +(A+B)

(+A)+(-B) +(A-B) -(B-A) +(A-B)

(-A)+(+B) -(A-B) +(B-A) +(A-B)

(-A)+(-B) -(A+B)

(+A)-(+B) +(A-B) -(B-A) +(A-B)

(+A)-(-B) +(A+B)

(-A)-(+B) -(A+B)

(-A)-(-B) -(A-B) +(B-A) +(A-B)

Addition and Subtraction

Subtract Algorithm

• When the signs of A and B are different add the two

magnitudes and attach the sign of A to the result.

• When the signs of A and B are identical compare the

magnitudes and subtract the smaller number from the larger.

Choose the sign of the result to be the same as A if A>B or

the complement of the sign of A if A<B.if the two

magnitudes are equal subtract b from a and make the sign of

the result positive.

Addition and Subtraction

Hardware Implementation

• We need Two registers to store two numbers and two flip flops to

store signs of numbers.

• It requires a parallel adder to perform the micro operation A+B.

• A comparator circuit is needed to compare A>B,A<B,A=B.

• The output carry flag.

• The add over flow flip flop AVF holds the overflow bit when A and B

are added.

Addition and Subtraction

Addition and Subtract Algorithm

Addition and Subtraction with Signed 2’s Complement Data

Addition and Subtraction with Signed 2’s Complement Data

Multiplication Algorithm

Multiplication Algorithm

Multiplication Algorithm

Multiplication Algorithm

Booth Multiplication Algorithm

• Booth algorithm gives a procedure for multiplying binary integers in

signed 2’s complements representation.

• Here it it treats a string of 1’s in the multiplier from bit weight 2k to

bit weight 2m can be treated as 2k+1-2m.

• The binary number 001110 has a string of 1’s from 23 to

21(k=3,m=1).the number can be represented as 2k+1-2m=24-21=16-

2=14.

• So the product is obtained by M *14. where m is Multiplicand 14 is

Multiplier can be done as M*24-M*21.

• I.E by shifting the binary multiplicand four times to the left and

subtract M shifted left once.

Booth Multiplication Algorithm
• Booth algorithm requires examination of the multiplier bits

and shifting of partial product.

• Prior to the shifting the multiplicand may be added to the

partial product,subtracted from the partial product or left un

changed based on the following rules.

1)The multiplicand is subtracted from the partial product upon

encountering the first least significant bit is 1 in a string of 1’s

in the multiplier.

2)The multiplicand is added to the partial product upon

encountering the first 0 in a string of 0’s in the multiplier.

3) The partial product does not change when the multiplier bit is

identical to the previous multiplier bit.

Negative:-14=110010 as -24+22-21.

Booth Multiplication Algorithm

Booth Multiplication Algorithm

Array Multiplier

Array Multiplier

• Example:

 Multiplicand:3=11

 Multiplier : 2=10
 1 1
 1 0

 0 0

 1 1

 1 1 0

Array Multiplier

• Example : Multiplicand : 1110 ,Multiplier:111

a0=1,a1=1,a2=1 b0=0,b1=1,b2=1,b3=1

 C0=0

 0 1 1 1

 1 1 1 0

 1 0 1 0 1 c1=1

 1 1 1 0

 1 1 0 0 0

C0=0,c1=1,c2=0,c3=0,c4=0,c5=1,c6=1

Division Algorithm

Divide Overflow

Conditions for overflow:

1)A divide overflow condition occurs if the higher

order off bits of the dividend constitute a number

grater than or equal to the divisor.

2) Division by zero must be Avoided.

• Over flow condition is detected by an special flip

flop called divide over flow flip flop(DVF).

Division Algorithm

Floating-Point Algorithms

Addition and Subtraction Algorithm

1) Check For Zero.

2) Align the Mantissas.

3) Add or Subtract the Mantissas.

4) Normalize the Result.

Addition and Subtraction Algorithm

Multiplication

1) Check for Zeros

2) Add the Exponents

3) Multiply the Mantissas.

4) Normalize the Product.

Multiplication Algorithm

Division

1) Check for Zeros.

2) Initialize the register and evaluate the sign.

3) Align the dividend.

4) Subtract the Exponents.

5) Divide the Mantissas.

Division Algorithm

BCD Adder

C=K+Z8Z4+Z8Z2

BCD Subtraction

• There are two methods to obtain 9’s Complement of BCD

Numbers.

1)Binary 1010 is added to each complemented digit and the

carry discarded after each addition.

Ex: 9’s Complement of BCD 0111 is Computed by first

complementing each bit to obtain 1000. adding binary 1010

and discard the end carry we obtain 0010.

2) Binary 0110 is added before the digit is complemented.

Ex: We add 0110 to 0111 to obtain 1101 complementing each

bit we obtain the required result of 0010.

Decimal Arithmetic Unit

X1=B1M’+B1’M

X2=B2

X4=B4M’+(B4’B2+B4B2’)M

X8=B8M’+B8’B4’B2’M

Decimal Arithmetic Addition

BCD Multiplication and Division Registers

Decimal Multiplication

Decimal Division

Control Unit

 Fig: Hardwired Control Unit

Memory Locations, Addresses,
and Operations

Memory Location, Addresses, and Operation

• Memory consists of
many millions of
storage cells, each
of which can store 1
bit.

• Data is usually
accessed in n-bit
groups. n is called
word length.

first word

second word

Figure 2.5. Memory words.

n bits

last word

i th word

•
•
•

•
•
•

Memory Location, Addresses, and
Operation

• 32-bit word length example

(b) Four characters

ASCII
character

ASCII
character

ASCII
character

ASCII
character

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

Sign bit: b31= 0 for positive numbers

b31= 1 for negative numbers

(a) A signed integer
• • •

Memory Location, Addresses, and
Operation

• To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location are
needed.

• A k-bit address memory has 2k memory locations, namely
0 – 2k-1, called memory space.

• 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

• 32-bit memory: 232 = 4G (1G=230)

• 1K(kilo)=210

• 1T(tera)=240

Memory Location, Addresses, and
Operation

• It is impractical to assign distinct addresses to
individual bit locations in the memory.

• The most practical assignment is to have
successive addresses refer to successive byte
locations in the memory – byte-addressable
memory.

• Byte locations have addresses O, 1, 2, … If
word length is 32 bits, they successive words
are located at addresses O, 4, 8,…

Big-Endian and Little-Endian Assignments

k
2 - 4

k
2 - 4

0 0

4

Byte address Byte address

(a) Big-endian assignment (b) Little-endian assignment

4

address

3 2 1 0

7 6 5 4

•
•
•

k

2 - 1
k

2 - 2
k

2 - 3
k

2 - 4

0 1 2 3

4 5 6 7

•
•
•

k

2 - 4
k

2 - 3
k

2 - 2
k

2 - 1

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the
word

Word

Memory Location, Addresses, and
Operation

• Address ordering of bytes

• Word alignment
– Words are said to be aligned in memory if they

begin at a byte addr. that is a multiple of the num
of bytes in a word.

• 16-bit word: word addresses: O, 2, 4,….

• 32-bit word: word addresses: O, 4, 8,….

• 64-bit word: word addresses: O, 8,16,….

• Access numbers, characters, and character
strings

Memory Operation

• Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

• Store (or Write)
 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

Instruction and Instruction
Sequencing

“Must-Perform” Operations

• Data transfers between the memory and the
processor registers

• Arithmetic and logic operations on data

• Program sequencing and control

• I/O transfers

Register Transfer Notation

• Identify a location by a symbolic name
standing for its hardware binary address (LOC,
‘O,…)

• Contents of a location are denoted by placing
square brackets around the name of the
location (R1←[LOC], ‘3 ←[‘1]+[‘2])

• Register Transfer Notation (RTN)

Assembly Language Notation

• Represent machine instructions and programs.

• Move LOC, R1 = R1←[LOC]

• Add ‘1, ‘2, ‘ 3 = ‘ 3 ←[‘1]+[‘2]

CPU Organization

• Single Accumulator

– Result usually goes to the Accumulator

– Accumulator has to be saved to memory quite often

• General Register

– Registers hold operands thus reduce memory traffic

– Register bookkeeping

• Stack

– Operands and result are always in the stack

Instruction Formats

• Computer may have different instructions .

• The number of address fields in the instruction format depends on the

internal organization of its registers.

• There are three different types of CPU organizations:

 1. Single Accumulator organization

• Basic Computer is a good example

• Accumulator is the only general purpose register

 2. General Register Organization

• Used by most modern computer processors

• Any of the registers can be used as the source or destination for

computer operations

 3. Stack Organization

• All operations are done using the hardware stack

Instruction Formats

• Instruction Fields

 1. OP-code field - specifies the operation to be performed.

 2. Address field - designates memory address(es) or a processor

register(s).

 3. Mode field - determines how the address field is to be interpreted

 (to get effective address or the operand).

• The number of address fields in the instruction format depends on the

internal organization of CPU.

• The three most common CPU organizations:

1. Single accumulator organization:

 ADD X /* AC  AC + M[X] */

2. General register organization:

 ADD R1, R2, R3 /* R1  R2 + R3 */

 ADD R1, R2 /* R1  R1 + R2 */

 MOV R1, R2 /* R1  R2 */

 ADD R1, X /* R1  R1 + M[X] */

3. Stack organization:

 PUSH X /* TOS  M[X] */

 ADD

Instruction Formats

• Three-Address Instructions

 Program to evaluate X = (A + B) * (C + D) :

 ADD R1, A, B /* R1 M[A] + M[B] */

 ADD R2, C, D /* R2 M[C] + M[D] */

 MUL X, R1, R2 /* M[X] R1 * R2 */

 - Results in short programs
 - Instruction becomes long (many bits)
• Two-Address Instructions
 Program to evaluate X = (A + B) * (C + D) :

 MOV R1, A /* R1 M[A] */

 ADD R1, B /* R1  R1 + M[B] */

 MOV R2, C /* R2  M[C] */

 ADD R2, D /* R2  R2 + M[D] */

 MUL R1, R2 /* R1  R1 * R2 */

 MOV X, R1 /* M[X] R1 */

Instruction Formats

Instruction Formats
• One-Address Instructions

 - Use an implied AC register for all data manipulation

 - Program to evaluate X = (A + B) * (C + D) :

 LOAD A /* AC  M[A] */

 ADD B /* AC AC + M[B] */

 STORE T /* M[T]  AC */

 LOAD C /* AC M[C] */

 ADD D /* AC AC + M[D] */

 MUL T /* AC AC * M[T] */

 STORE X /* M[X] AC */

Instruction Formats

• Zero-Address Instructions.
 - Can be found in a stack-organized computer.

 - Program to evaluate X = (A + B) * (C + D) :

 PUSH A /* TOS  A */
 PUSH B /* TOS  B */
 ADD /* TOS (A + B) */
 PUSH C /* TOS C */
 PUSH D /* TOS D */
 ADD /* TOS (C + D) */
 MUL /* TOS (C + D) * (A + B) */
 POP X /* M[X] TOS */

Using Registers

• Registers are faster

• Shorter instructions

– The number of registers is smaller (e.g. 32
registers need 5 bits)

• Potential speedup

• Minimize the frequency with which data is
moved back and forth between the memory
and processor registers.

Instruction Execution and Straight-Line
Sequencing

R0,C

A,R0

Move

Begin execution here Move

Address Contents

C

B

A

Data for
the program

3-instruction
program
segment

Add B,R0

i

i + 4

i + 8

Figure 2.8. A program for C   + 

Assumptions:
-One memory operand per
instruction
-32-bit word length
-Memory is byte
addressable
-Full memory address can
be directly specified
in a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

n

NUMn

Figure 2.9. A straight-line program for adding n numbers.

SUM

NUM1

NUM2

i

i + 4n - 4

i + 4n

i + 8 Bir+a4

Move NUM1,R0

chAdidngNUM2,R

0

Add NUM3,R0

•
•
•

Add NUMn,R0

Move R0,SUM

•
•
•

•
•
•

N,R1 Move

NUMn

Figure 2.10. Using a loop to add n numbers.

BranLOcOhP

 ing
Program loop

Determine address of
"Next" number and add

SUM

N

NUM1

NUM2

Clear R0

"Next" number to R0

Decrement R1

Branch>0 LOOP

Move R0,SUM

•
•
•

n

•
•
•

Branch target

Conditional branch

Condition Codes

• Condition code flags

• Condition code register / status register

• N (negative)

• Z (zero)

• V (overflow)

• C (carry)

• Different instructions affect different flags

Conditional Branch Instructions

• Example:

– A: 1 1 1 1 0 0 0 0

– B: 0 0 0 1 0 1 0 0

C = 1

S = 1

V = 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

Z = 0

Status Bits

Cn

Cn-1

V Z S C

Fn-1

Zero Check

A B

ALU
F

Addressing Modes

• The way the operands are chosen during program execution is
dependent on the addressing mode of the instruction .

• Specifies a rule for interpreting or modifying the address field of the

 instruction (before the operand is actually referenced).

Need for different addressing modes

 1. To give programming flexibility to the user i.e pointers to

 memory,Counters for loop control,indexing of data,program

 relocation.

 2. To use the bits in the address field of the instruction efficiently i.e

 reduce the number of bits.

Addressing Modes
1.Implied Mode

• Address of the operands are specified implicitly in the definition of

the instruction.

• No need to specify address in the instruction.

• EA = AC, or EA = Stack[SP].

• Examples CLA, CME, INP

2. Immediate Mode

• Instead of specifying the address of the operand, operand itself is

specified.

• No need to specify address in the instruction

• Operand itself needs to be specified

• Fast to acquire an operand

3.Register Mode

– Address specified in the instruction is the register address

– Designated operand need to be in a register

– Shorter address than the memory address

– Saving address field in the instruction

– Faster to acquire an operand than the memory addressing

– EA = IR(R) (IR(R): Register field of IR)

4.Register Indirect Mode

– Instruction specifies a register which contains the memory address of the
operand .

– Saving instruction bits since register address is shorter than the memory
address.

– Slower to acquire an operand than both the register addressing or
memory addressing.

– EA = [IR(R)] ([x]: Content of x).

Addressing Modes

4.Autoincrement or Auto decrement Mode

• When the address in the register is used to access memory, the value

in the register is incremented or decremented by 1 automatically .

5.Relative Addressing Modes

• The Address fields of an instruction specifies the part of the address

(abbreviated address) which can be used along with a designated

register to calculate the address of the operand.

• Address field of the instruction is short.

• Large physical memory can be accessed with a small number of

address bits.

• EA = f(IR(address), R)

Addressing Modes

• 3 Different Relative Addressing Modes depending on R;

 1. PC Relative Addressing Mode (R = PC)

 Ex: EA = PC + IR(address)

 2. Indexed Addressing Mode (R = IX, where IX: Index Register)

 Ex: EA = IX + IR(address)

 3. Base Register Addressing Mode

 (R = BAR, where BAR: Base Address Register)

 Ex: EA = BAR + IR(address)

Addressing Modes

6. Direct Address Mode

– Instruction specifies the memory address which can be used directly to

access the memory.

– Faster than the other memory addressing modes.

– Too many bits are needed to specify the address for a large physical

memory space.

– EA = IR(addr) (IR(addr): address field of IR)

7. Indirect Addressing Mode

– The address field of an instruction specifies the address of a memory

location that contains the address of the operand.

– When the abbreviated address is used large physical memory can be

addressed with a relatively small number of bits.

– Slow to acquire an operand because of an additional memory access

– EA = M[IR(address)]

Addressing Modes

Addressing Modes

Addressing Modes

Addressing Modes

Example :

Addressing Modes

Data Transfer and Manipulation Instructions

• Computer instructions can be classified into three categories.

 1. Data Transfer Instructions

 2. Data Manipulation Instructions

 3. Program Control Instructions

• Data Transfer Instructions transfer the data from one location to

another location.

• Data manipulation instructions performs arithmetic ,logic and shift

operations on the data.

• Program control instructions provide decision making and change the

path taken by the program when executed in the computer.

Data Transfer Instructions
• Data Transfer instructions move the data between

 Memory ---- Processor register

 Processor register ---- Input/output

 Processor registers ---- Processor registers

 Table : Typical data Transfer Instructions

Data Transfer Instructions

 Table : Addressing modes for load instruction

Data Manipulation Instructions

• Data Manipulation Instructions are of three basic types.

 1. Arithmetic Instructions

 2. Logical and Bit Manipulation Instructions

 3. Shift Instructions

1. Arithmetic Instructions

 Table: Typical Arithmetic Instructions

Data Manipulation Instructions

2. Logical and Bit manipulation Instructions

 Table : Logical and Bit Manipulation Instructions

Data Manipulation Instructions

Shift Instructions

Program Control
• When the program control instruction is executed it change the

address value in the program counter and cause the flow of control to

be altered.

 Table: Program Control Instructions

• Branch and Jump instructions are conditional and Unconditional

Instructions.

• CMP and Test set some of the bits in PSW(Processor status Word).

Program Control
• In Basic Computer, the processor had several (status) flags – 1 bit value that

indicated various information about the processor’s state – E, FGI, FGO, I, IEN, R.

• In some processors, flags like these are often combined into a register – the

processor status register (PSR); sometimes called a processor status word (PSW).

• Common flags in PSW are

– C (Carry): Set to 1 if the carry out of the ALU is 1

– S (Sign): The MSB bit of the ALU’s output

– Z (Zero): Set to 1 if the ALU’s output is all 0’s

– V (Overflow): Set to 1 if there is an overflow

Status Flag Circuit

c7

c8

A B
8 8

8-bit ALU

V Z S C
F7

F7 - F0

8

F

Check for

zero output

Program Control

 Table: conditional branch instructions

Example:- A: 11110000 =240 B: 00010100 =20

 Unsigned

 A : 11110000

 B’+1: 11101100

 A-B: 11011100 =220

 C=1 S=1 V=0 Z=0

 Signed

 A : 11110000 =-16

 B : 00010100 =20

 A-B : 11011100 2’s Complement of(36)

Program Control

Subroutine Call and Return

 - Call subroutine

- Jump to subroutine

- Branch to subroutine

- Branch and save return address

- Two Most Important Operations are

 * Branch to the beginning of the Subroutine

 - Same as the Branch or Conditional Branch

 * Save the Return Address to get the address

 of the location in the Calling Program upon

 exit from the Subroutine

• Return Subroutine from memory.

CALL

 SP  SP - 1

 M[SP]  PC

 PC  EA

RTN

 PC  M[SP]

 SP  SP + 1

Encoding of Machine Instructions
• Assembly language program needs to be converted into machine
instructions. (ADD = 0100 in ARM instruction set)
• In the previous section, an assumption was made that all instructions are

one word in length.
• OP code: the type of operation to be performed and the type of operands

used may be specified using an encoded binary pattern
• Suppose 32-bit word length, 8-bit OP code (how many instructions can we

have?), 16 registers in total (how many bits?), 3-bit addressing mode
indicator.

• Add R1, R2
• Move 24(R0), R5
• LshiftR #2, R0
• Move #$3A, R1
• Branch>0 LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

Encoding of Machine Instructions

• What happens if we want to specify a memory operand
using the Absolute addressing mode?

• Move R2, LOC

• 14-bit for LOC – insufficient

• Solution – use two words

Memory address/Immediate operand

(b) Two-word instruction

OP code Source Dest Other info

Encoding of Machine Instructions

• Then what if an instruction in which two operands can be
specified using the Absolute addressing mode?

• Move LOC1, LOC2

• Solution – use two additional words

• This approach results in instructions of variable length.
Complex instructions can be implemented, closely
resembling operations in high-level programming
languages – Complex Instruction Set Computer (CISC)

Encoding of Machine Instructions

• If we insist that all instructions must fit into a single 32-
bit word, it is not possible to provide a 32-bit address or
a 32-bit immediate operand within the instruction.

• It is still possible to define a highly functional instruction
set, which makes extensive use of the processor registers.

• Add R1, R2 ----- yes

• Add LOC, R2 ----- no

• Add (R3), R2 ----- yes

UNIT-IV

Register Transfer
• Registers are designated by capital letters, sometimes followed by

numbers (e.g., A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Information Transfer from one register to another register is
designated in symbolic form by using a replacement operator.

 R2  R1

• Registers and their contents can be viewed and represented in various
ways:

 - A register can be viewed as a single entity:

MAR

Register Transfer
- Registers may also be represented showing the bits of data they

contain

- Numbering of a registers

Showing individual bits

7 6 5 4 3 2 1 0

Numbering of bits

R2

15 0

- Portion of register

Control Function

• The actions are performed only when certain conditions are true.

• This is similar to an “if” statement in a programming language.

• In digital systems, this is often done via a control signal, called a

control function . control function is a Boolean variable.

– If the signal is 1, the action takes place

• This is represented as:

 P: R2  R1

Register Transfer

Subfields

15 8 7 0

PC(H) PC(L)

Register Transfer

• Which means “if P = 1, then load the contents of register R1 into

register R2”, i.e., if (P = 1) then (R2  R1).

• Implementation of controlled transfer

 P: R2  R1

 Fig: Block Diagram

Clock R2

R1

Control Circuit

Load P

n

Register Transfer
• The same clock controls the circuits that generate the control function

and the destination register.

 Fig :Timing Diagram

Transfer occurs here

Clock

Load

t t+1

• If two or more operations are to occur simultaneously, they are

separated with commas

P: R3  R5,MAR  IR

• Here, if the control function P = 1, load the contents of R5 into R3,

and at the same time (clock), load the contents of register IR into

register MAR

• Basic Symbols Used for Register Transfer is

 - Letters and Numerals to denote a registers. Ex: MAR,IR,R2 .

 - Parentheses () to denote a part of a register . Ex: R2(0-7),R2(L).

 - Arrow to denote transfer of Information. Ex: R2 R1

 - Comma , Separates two micro operations . Ex: R2 R1,R3R4

Register Transfer

Overview

 Instruction Set Processor (ISP)

 Central Processing Unit (CPU)

 A typical computing task consists of a series

of steps specified by a sequence of machine

instructions that constitute a program.

 An instruction is executed by carrying out a

sequence of more rudimentary operations.

Fundamental Concepts

 Processor fetches one instruction at a time and

perform the operation specified.

 Instructions are fetched from successive memory

locations until a branch or a jump instruction is

encountered.

 Processor keeps track of the address of the memory

location containing the next instruction to be fetched

using Program Counter (PC).

 Instruction Register (IR)

Executing an Instruction

 Fetch the contents of the memory location pointed

to by the PC. The contents of this location are

loaded into the IR (fetch phase).

IR ← [[PC]]

 Assuming that the memory is byte addressable,

increment the contents of the PC by 4 (fetch phase).

PC ← [PC] + 4

 Carry out the actions specified by the instruction in

the IR (execution phase).

Processor Organization

Textbook Page 413

MDR HAS TWO INPUTS AND TWO OUTPUTS

Datapath

Executing an Instruction

 Transfer a word of data from one processor
register to another or to the ALU.

 Perform an arithmetic or a logic operation
and store the result in a processor register.

 Fetch the contents of a given memory
location and load them into a processor
register.

 Store a word of data from a processor
register into a given memory location.

B A

Y

Register Transfers
Riin

Ri

Riout

Yin

Internal processor
bus

Constant 4

MUX

ALU

Zin

Z

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Performing an Arithmetic or
Logic Operation

 The ALU is a combinational circuit that has no

internal storage.

 ALU gets the two operands from MUX and bus.

The result is temporarily stored in register Z.

 What is the sequence of operations to add the

contents of register R1 to those of R2 and store the

result in R3?

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Fetching a Word from Memory
 The response time of each memory access varies

(cache miss, memory-mapped I/O,…).

 To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).

 Move (R1), R2
 MAR ← [R1]

 Start a Read operation on the memory bus

 Wait for the MFC response from the memory

 Load MDR from the memory bus

 R2 ← [MDR]

Timing

Assume MAR

is always available

on the address lines

of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

Execution of a Complete
Instruction

 Add (R3), R1

 Fetch the instruction

 Fetch the first operand (the contents of the

memory location pointed to by R3)

 Perform the addition

 Load the result into R1

Architecture

B A

Y

Riin

Ri

Rio

ut

Yin

Internal processor
bus

Constant 4

MUX

ALU

Zin

Z

Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Execution of Branch
Instructions

 A branch instruction replaces the contents of

PC with the branch target address, which is

usually obtained by adding an offset X given

in the branch instruction.

 The offset X is usually the difference between

the branch target address and the address

immediately following the branch instruction.

 Conditional branch

Execution of Branch
Instructions

Step Action

1

2

3

4

5

PCout , MAR in , Read, Select4,Add, Zin

Zout, PCin , Yin, WMF C MDRout , IRin

Offset-field-of-IRout, Add, Zin

Zout, PCin , End

Figure 7.7. Control sequence for an unconditional branch instruction.

Multiple-Bus Organization
 Add R4, R5, R6

Step Action

R=B, MAR in , Read, IncPC PCout,

WMFC

MDRoutB, R=B, IR in

1

2

3

4 R4outA, R5outB, SelectA, Add, R6in , End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,

for the three-bus organization in Figure 7.8.

Hardwired Control

Overview

 To execute instructions, the processor must

have some means of generating the control

signals needed in the proper sequence.

 Two categories: hardwired control and

microprogrammed control

 Hardwired system can operate at high speed;

but with little flexibility.

Control Unit Organization
CLK

Clock

IR

Decoder/

encoder

Control signals

Figure 7.10. Control unit organization.

Control step
counter

Condition
codes

External
inputs

Generating Zin

 Zin = T1 + T6 • ADD + T4 • BR + …

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T1

Add Branch

T4 T
6

Generating End

 End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

Microprogrammed

Control

Overview
 Control signals are generated by a program similar to machine

language programs.

 Control Word (CW); microroutine; microinstruction

Overview
 The previous organization cannot handle the situation when the control

unit is required to check the status of the condition codes or external
inputs to choose between alternative courses of action.

 Use conditional branch microinstruction.

AddressMicroinstruction

0

1

2

3

PCout , MAR in , Read, Select4,Add, Zin Zout , PCin ,

Yin , WMFC

MDRout , IRin

Branch to startingaddressof

appropriatemicroroutine .

25

26

27

If N=0, then branch to microinstruction0

Offset-field-of-IRout , SelectY, Add, Zin

Zout , PCin , End

Figure 7.17. Microroutine for the instruction Branch<0.

Overview

Figure 7.18. Organization of the control unit to allow

conditional branching in the microprogram.

Control
store

Clock

generator

Starting and
branch address

Condition
codes

External
inputs

CW

IR

 PC

Microinstructions

 A straightforward way to structure
microinstructions is to assign one bit position
to each control signal.

 However, this is very inefficient.

 The length can be reduced: most signals are
not needed simultaneously, and many signals
are mutually exclusive.

 All mutually exclusive signals are placed in
the same group in binary coding.

Further Improvement

 Enumerate the patterns of required signals in

all possible microinstructions. Each

meaningful combination of active control

signals can then be assigned a distinct code.

 Vertical organization

 Horizontal organization

Microprogram Sequencing

 If all microprograms require only straightforward
sequential execution of microinstructions except for
branches, letting a μPC governs the sequencing
would be efficient.

 However, two disadvantages:
 Having a separate microroutine for each machine instruction results
in a large total number of microinstructions and a large control store.

 Longer execution time because it takes more time to carry out the
required branches.

 Example: Add src, Rdst

 Four addressing modes: register, autoincrement,
autodecrement, and indexed (with indirect forms).

- Bit-ORing

- Wide-Branch Addressing

- WMFC

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

0 4 3 8 7 11 10

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.

Note:Microinstruction at location 170 is not executed for this addressing mode.

Microinstruction Address
(octal)

000

001

002

003

121

122

123

170

171

172

173

PCout, MARin, Read, Selec4t, Add, Zin Zout,

PCin, Yin, WMFC

MDRout, IRin

Branch { PC 101 (from Instruction

decoder);

PC5,4  [IR10,9]; PC3  [IR10]  [IR9]  [IR8]}

Rsrcout, MARin , Read, Select4, Add,inZ Zout,

Rsrcin

Branch {PC 170;PC0  [IR8]}, WMFC

MDRout, MARin, Read, WMFC MDRout, Yin

Rdsotut, SelectY, Add, Zin Zout, Rdsitn, End

Microinstructions with Next-
Address Field

 The microprogram we discussed requires several
branch microinstructions, which perform no useful
operation in the datapath.

 A powerful alternative approach is to include an
address field as a part of every microinstruction to
indicate the location of the next microinstruction to
be fetched.

 Pros: separate branch microinstructions are virtually
eliminated; few limitations in assigning addresses to
microinstructions.

 Cons: additional bits for the address field (around
1/6)

bit-ORing

Chapter 5. The

Memory System

Overview

 Basic memory circuits

 Organization of the main memory

 Cache memory concept

 Virtual memory mechanism

 Secondary storage

Basic Concepts

k
2 - 4

k
2 - 4

0 0

4

Byte address Byte address

(a) Big-endian assignment (b) Little-endian assignment

4

 The maximum size of the memory that can be used in any computer is
determined by the addressing scheme.

16-bit addresses = 216 = 64K memory locations

 Most modern computers are byte addressable.

Word

address

3 2 1 0

7 6 5 4

•
•
•

k

2 - 1
k

2 - 2
k

2 - 3
k

2 - 4

0 1 2 3

4 5 6 7

•
•
•

k

2 - 4
k

2 - 3
k

2 - 2
k

2 - 1

Traditional Architecture

MDR

MAR

Figure 5.1. Connection of the memory to the processor.

k-bit
address bus

n-bit
data bus

Processor Memory

Up to 2k addressable
locations

Word length =n bits

Control lines

(R / W, MFC, etc.)

Basic Concepts

 “Block transfer” – bulk data transfer

 Memory access time

 Memory cycle time

 RAM – any location can be accessed for a
Read or Write operation in some fixed
amount of time that is independent of the
location’s address.

 Cache memory

 Virtual memory, memory management unit

Semiconductor RAM

Memories

Internal Organization of
Memory Chips

FF

zation of bit cells in a memory chip.

Address

decoder

FF

Memory
cells

Sense / Write
circuit

Sense / Write
circuit

A 0

A 1

A 2

W0

W1

R /

W

CS

b7 b7 b1 b1 b0 b0

Sense / Write circuit

Data input/output lines: b7

Figure 5.2. Organi

b1 b0

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

• • •

• • •

• • •

A 3

W15

16 words of 8 bits each: 16x8 memory
org.. It has 16 external connections:

addr. 4, data 8, control: 2,

power/ground: 2

1K memory cells: 128x8 memory,

external connections: ? 19(7+8+2+2)

1Kx1:? 15 (10+1+2+2)

A Memory Chip

Figure 5.3. Organization of a 1K  1 memory chip.

CS

Sense/
Write
circuitry

5-bit row
address

Data
input/output

5-bit
decoder

address
5-bit column

10-bit
address

32  32

memory cell
array

R/ W

W0

W1

W31

32-to-1

output multiplexer

and

input demultiplexer

Static Memories

Y X

Word line

Bit lines

Figure 5.4. A static RAM cell.

T2 T1

 The circuits are capable of retaining their state as long as power
is applied.

b b

Static Memories
 CMOS cell: low power consumption

Asynchronous DRAMs

Figure 5.6. A single-transistor dynamic memory cell

T

C

 Static RAMs are fast, but they cost more area and are more expensive.

 Dynamic RAMs (DRAMs) are cheap and area efficient, but they can not
retain their state indefinitely – need to be periodically refreshed.

Bit line

Word line

A Dynamic Memory Chip

Sense / Write
circuits

Row
address

latch

Row
decoder

Column
decoder

Column
address
latch

4096 512  8
cell array

CS

R/ W

A20 - 9  A 8 - 0

D0 D7

RAS

Figure 5.7. Internal organization of a 2M  8 dynamic memory chip.

Row Addr. Strobe

CAS

Column Addr. Strobe

Fast Page Mode

 When the DRAM in last slide is accessed, the

contents of all 4096 cells in the selected row are

sensed, but only 8 bits are placed on the data lines

D7-0, as selected by A8-0.

 Fast page mode – make it possible to access the

other bytes in the same row without having to

reselect the row.

 A latch is added at the output of the sense amplifier

in each column.

 Good for bulk transfer.

Synchronous DRAMs
 The operations of SDRAM are controlled by a clock signal.

Clock

RA S

CA S

R/ W

CS

Cell array

Row
address

latch

Row
decoder

Figure 5.8. Synchronous DRAM.

Column

decoder
Read/Write

circuits & latches

Column
address
counter

Row/Column

address

Data input
register

Data output
register

Data

Refresh
counter

Mode register

and
timing control

Synchronous DRAMs
Clock

R/ W

RAS

CAS

Figure 5.9. Burst read of length 4 in an SDRAM.

Row Col

D0 D1 D2 D3

Address

Data

Synchronous DRAMs

 No CAS pulses is needed in burst operation.

 Refresh circuits are included (every 64ms).

 Clock frequency > 100 MHz

 Intel PC100 and PC133

Latency and Bandwidth

 The speed and efficiency of data transfers among
memory, processor, and disk have a large impact on
the performance of a computer system.

 Memory latency – the amount of time it takes to
transfer a word of data to or from the memory.

 Memory bandwidth – the number of bits or bytes
that can be transferred in one second. It is used to
measure how much time is needed to transfer an
entire block of data.

 Bandwidth is not determined solely by memory. It is
the product of the rate at which data are transferred
(and accessed) and the width of the data bus.

DDR SDRAM

 Double-Data-Rate SDRAM

 Standard SDRAM performs all actions on the rising
edge of the clock signal.

 DDR SDRAM accesses the cell array in the same
way, but transfers the data on both edges of the
clock.

 The cell array is organized in two banks. Each can
be accessed separately.

 DDR SDRAMs and standard SDRAMs are most
efficiently used in applications where block transfers
are prevalent.

Structures of Larger Memories
19-bit internal chip address

decoder
2-bit

21-bit
addresses

A 0

A 1

A19

A20

D7-0 D15-8

512K ´ 8
memory chip

Chip select

19-bit
address

D31-24 D23-16

512K ´ 8 memory chip

8-bit data
input/output

Memory System
Considerations

 The choice of a RAM chip for a given application depends on
several factors:

Cost, speed, power, size…

 SRAMs are faster, more expensive, smaller.

 DRAMs are slower, cheaper, larger.

 Which one for cache and main memory, respectively?

 Refresh overhead – suppose a SDRAM whose cells are in 8K
rows; 4 clock cycles are needed to access each row; then it
takes 8192×4=32,768 cycles to refresh all rows; if the clock rate
is 133 MHz, then it takes 32,768/(133×10-6)=246×10-6 seconds;
suppose the typical refreshing period is 64 ms, then the refresh
overhead is 0.246/64=0.0038<0.4% of the total time available for
accessing the memory.

Memory Controller

RAS

CAS

R/ W

Clock

Row/Column
address

Memory
controller

CS

Data

Memory

Figure 5.11. Use of a memory controller.

Processor

Address

R/ W

Request

Clock

Read-Only Memories

Read-Only-Memory

 Volatile / non-volatile memory

 ROM

 PROM: programmable ROM

electrically Not connected to store a 1

Connected to store a 0

Figure 5.12. A ROM cell.

Word line

P

Bit line

 EPROM: erasable, reprogrammable ROM

 EEPROM: can be proT grammed and erased

Flash Memory

 Similar to EEPROM

 Difference: only possible to write an entire

block of cells instead of a single cell

 Low power

 Use in portable equipment

 Implementation of such modules

 Flash cards

 Flash drives

Speed, Size, and Cost
Processor

Primary
cache

cache

Main
memory

Increasing
size

Figure 5.13. Memory hierarchy.

Magnetic disk
secondary
memory

Increasing Increasing
speed cost per bit

Registers

L1

SecondaryL2

Cache Memories

Cache

 What is cache?

 Why we need it?

 Locality of reference (very important)

- temporal

- spatial

 Cache block – cache line

 A set of contiguous address locations of some size

Page 315

Cache

Figure 5.14. Use of a cache memory.

 Replacement algorithm

 Hit / miss

 Write-through / Write-back

 Load through

Cache

Main

memory

Processor

Memory Hierarchy
CPU

Cache

Main Memory I/O Processor

Magnetic

Disks Magnetic Tapes

75 / 19

76 / 19

Cache Memory

CPU

Cache

(Fast)

Cache

Main

Memory

(Slow)

Mem

Hit

 High speed (towards CPU speed)

 Small size (power & cost)

Miss

95% hit ratio

Access = 0.95 Cache + 0.05 Mem

77 / 19

Cache Memory

CPU

Cache

1 Mword

Main

Memory 1

Gword

30-bit Address

Only 20 bits !!!

78 / 19

Cache Memory
Main

Memory

00000000

00000001

•

•

•

•

•

•

•

•

•

•

3FFFFFFF

00000 Cache
00001

•

•

•

•

FFFFF

Address Mapping !!!

Direct Mapping

tag

tag

tag

Main
memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

Block 0

Block 1

Block 127

7 4 Main memory address

Tag Block Word

Figure 5.15. Direct-mapped cache.

5

4: one of 16 words. (each

block has 16=24 words)

7: points to a particular block

in the cache (128=27)

5: 5 tag bits are compared

with the tag bits associated

with its location in the cache.

Identify which of the 32

blocks that are resident in

the cache (4096/128).

Block j of main memory maps onto

block j modulo 128 of the cache

Cache

80 / 19

Cache

000 0 1 A 6

080 4 7 C C

150 0 0 0 5

DirecAtddMressapping

Tag Data

000 0 1 A 6

Compare
Match

No match

10 16

Bits Bits

(Tag) (Data)

000 00500

00000

00500

00900

01400

FFFFF

20

Bits

(Addr)

What happens

when Address

= 100 00500

81 / 19

Cache

000 0 1 A 6

0 2 5 4

080
4 7 C C

A 0 B 4

150
0 0 0 5

5 C 0 4

•

•

000 0050 0

DirecAtddMressapping with Blocks

Tag Data

000 0 1 A 6

Compare
Match

No match

10 16

Bits Bits

(Tag) (Data)

00500

00501

00900

00901
•
01400

01401

FFFFF

20

Bits

(Addr)

00000

Block Size = 16

Direct Mapping
Tag Block Word

5 7 4 Main memory address

 Tag: 11101

Block: 1111111=127, in the 127th block of the

cache

Word:1100=12, the 12th word of the 127th

block in the cache

11101,1111111,1100

Associative Mapping

4

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

12 Main memory address

Figure 5.16. Associative-mapped cache.

Tag Word

4: one of 16 words. (each

block has 16=24 words)

12: 12 tag bits Identify which

of the 4096 blocks that are

resident in the cache

4096=212.

84 / 19

Associative Memory

00000 Cache
00001

•

•

•

•

Main

Memory

00000000

00000001

•

•

00012000

•

•

08000000

•

•

15000000

•

3FFFFFFF

00012000

15000000

FFFFF
08000000

Address (Key) Data

Cache Location

85 / 19

Associative Mapping

Cache

0 1 A 6

4 7 C C

0 0 0 5

00012000

15000000

08000000

00012000

30 Bits

(Key)

16 Bits

(Data)

0 1 A 6

Data

Address

Can have

any number

of locations

How many

comparators?

Associative Mapping

 Tag: 111011111111

Word:1100=12, the 12th word of a block in the

cache

111011111111,1100

12 4 Main memory address

Tag Word

Set-Associative Mapping

tag

tag

tag

Cache

Main
memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

Figure 5.17. Set-associative-mapped cache with two blocks per set.

Tag Set Word

6 6 4 Main memory address

4: one of 16 words. (each

block has 16=24 words)

6: points to a particular set in

the cache (128/2=64=26)

6: 6 tag bits is used to check

if the desired block is

present (4096/64=26).

88 / 19

ssociative Mapping

Cache

000 0 1 A 6

150 0 0 0 5

00500

01400

00900

000 00500

SAeddtre-sAs

Tag1 Data1

Compare

Match

10 16

Bits Bits

(Tag) (Data)

00000

FFFFF

20

Bits

(Addr)

010 0 7 2 1

000 0 9 0 9

080 4 7 C C 000 0 8 2 2 000 0 1 A 6 010 0 7 2 1

Tag2 Data2

Compare

10 16

Bits Bits

(Tag) (Data)

2-Way Set Associative

No match

Set-Associative Mapping

 Tag: 111011

 Set: 111111=63, in the 63th set of the cache

 Word:1100=12, the 12th word of the 63th set

in the cache

Tag Set Word

6 6 4 Main memory address

111011,111111,1100

Replacement Algorithms

 Difficult to determine which blocks to kick out

 Least Recently Used (LRU) block

 The cache controller tracks references to all

blocks as computation proceeds.

 Increase / clear track counters when a

hit/miss occurs

91 / 19

Replacement Algorithms
 For Associative & Set-Associative Cache

Which location should be emptied when the cache

is full and a miss occurs?

 First In First Out (FIFO)

 Least Recently Used (LRU)

 Distinguish an Empty location from a Full one

 Valid Bit

92 / 19

Replacement Algorithms
Reference

CPU A B C A D E A D C F

Miss Miss Miss Hit Miss Miss Miss Hit Hit Miss

Cache

FIFO 

A A A A A E E E E E

B B B B B A A A A

C C C C C C C F

D D D D D D

Hit Ratio = 3 / 10 = 0.3

93 / 19

Replacement Algorithms
Reference

CPU A B C A D E A D C F

Miss Miss Miss Hit Miss Miss Hit Hit Hit Miss

Cache

LRU 

A B C A D E A D C F

A B C A D E A D C

A B C A D E A D

B C C C E A

Hit Ratio = 4 / 10 = 0.4

Performance

Considerations

Overview
 Two key factors: performance and cost

 Price/performance ratio

 Performance depends on how fast machine
instructions can be brought into the processor for
execution and how fast they can be executed.

 For memory hierarchy, it is beneficial if transfers to
and from the faster units can be done at a rate equal
to that of the faster unit.

 This is not possible if both the slow and the fast
units are accessed in the same manner.

 However, it can be achieved when parallelism is
used in the organizations of the slower unit.

Interleaving

(a) Consecutive words in a module

k bits m bits

Module

i

Module Address in module MM address

ABR DBR ABR DBR ABR DBR

Module 0 Module

n - 1

Figure 5.25. Addressing multiple-module memory systems.

(b) Consecutive words in consecutive modules

i

Module Module

0

ABR DBR ABR DBR

Module

ABR DBR

Address in module Module MM address

k
2 - 1

 If the main memory is structured as a collection of physically
separated modules, each with its own ABR (Address buffer
register) and DBR(Data buffer register), memory access
operations may proceed in more than one module at the same
time.

m bits k bits

Hit Rate and Miss Penalty

 The success rate in accessing information at various

levels of the memory hierarchy – hit rate / miss rate.

 Ideally, the entire memory hierarchy would appear to

the processor as a single memory unit that has the

access time of a cache on the processor chip and

the size of a magnetic disk – depends on the hit rate

(>>0.9).

 A miss causes extra time needed to bring the

desired information into the cache.

 Example 5.2, page 332.

Hit Rate and Miss Penalty (cont.)

 Tave=hC+(1-h)M

 Tave: average access time experienced by the processor

 h: hit rate

 M: miss penalty, the time to access information in the main
memory

 C: the time to access information in the cache

 Example:

 Assume that 30 percent of the instructions in a typical program
perform a read/write operation, which means that there are 130
memory accesses for every 100 instructions executed.

 h=0.95 for instructions, h=0.9 for data

 C=10 clock cycles, M=17 clock cycles, interleaved memory
 Time without cache 130x10

Time with cache 100(0.95x1+0.05x17)+30(0.9x1+0.1x17)

The computer with the cache performs five times better

= 5.04

How to Improve Hit Rate?

 Use larger cache – increased cost

 Increase the block size while keeping the

total cache size constant.

 However, if the block size is too large, some

items may not be referenced before the block

is replaced – miss penalty increases.

 Load-through approach

Caches on the Processor Chip

 On chip vs. off chip
 Two separate caches for instructions and data,

respectively
 Single cache for both
 Which one has better hit rate? -- Single cache


What’s the advantage of separating caches? – parallelism, better
performance

Level 1 and Level 2 caches
L1 cache – faster and smaller. Access more than one word
simultaneously and let the processor use them one at a time.

L2 cache – slower and larger.

How about the average access time?

Average access time: tave = h1C1 + (1-h1)h2C2 + (1-h1)(1-h2)M

where h is the hit rate, C is the time to access information in cache, M is
the time to access information in main memory.

Other Enhancements

 Write buffer – processor doesn’t need to wait

for the memory write to be completed

 Prefetching – prefetch the data into the cache

before they are needed

 Lockup-Free cache – processor is able to

access the cache while a miss is being

serviced.

VIRTUAL MEMORY

• Virtual memory is a concept used in some large
computer systems that permit the user to construct
programs as though a large memory space were
available, equal to the totality of auxiliary memory

• Each address that is referenced by the CPU goes
through an address mapping from the so-called virtual
address to a physical address in main memory.

• A virtual memory system provides a mechanism for
translating program-generated addresses in to correct
main memory locations

• The translation or mapping is handled automatically by
the hardware by means of a mapping table.

Address space and memory space
• An address used by a programmer will be called a

virtual address, and the set of such addresses the

address space.

• An address in main memory is called a location or

physical address. the set of such location is called the

memory space.

Relation between Address and memory space in a virtual memory system

Mapping using Memory table

• The mapping table may be stored in a
separate memory or in main memory

Memory table for mapping a virtual address

Mapping using paging or page table

• The physical memory is broken down in to groups of

equal size blocks.

• The term page refers to groups to groups of address

space of the same size as block.

Address space and memory space split in to group of 1K words

Organization of memory Mapping
Table in a paged system

PAGE REPLACEMENT

 Modified page fault service routine

Decision on which page to displace to make room for
an incoming page when no free frame is available

1. Find the location of the desired page on the backing store
2. Find a free frame
 - If there is a free frame, use it
 - Otherwise, use a page-replacement algorithm to select a victim frame
 - Write the victim page to the backing store
3. Read the desired page into the (newly) free frame
4. Restart the user process

2
f 0 v i

f v

frame
valid/
 invalid bit

page table

change to
 invalid

4
reset page
 table for
 new page

victim

1

swap
 out
 victim
 page

3
swap
 desired
 page in

backing store

physical memory

Virtual Memory

PAGE REPLACEMENT

ALGORITHMS
FIFO

0

7

1

7

2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 7 0 1

0 0

7

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

1

3

0

1

2

7

1

2

7

0

2

7

0

1

Page frames

Reference string

-

FIFO algorithm selects the page that has been in memory the longest time
Using a queue - every time a page is loaded, its
 identification is inserted in the queue
Easy to implement
May result in a frequent page fault

Optimal Replacement (OPT) - Lowest page fault rate of all algorithms

Replace that page which will not be used for the longest period of time

0

7

1

7

2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 7 0 1

0 0

7

1

2

0

1

2

0

3

2

4

3

2

0

3

2

0

1

7

0

1

Page frames

Reference string

Virtual Memory

Memory Management
Requirements

 Multiple programs

 System space / user space

 Protection (supervisor / user state, privileged

instructions)

 Shared pages

Secondary Storage

Magnetic Hard Disks

Disk

Disk drive

Disk controller

Organization of Data on a Disk

Sector 0, track 0

Sector 3, trackn

Figure 5.30. Organization of one surface of a disk.

Sector 0, track 1

Access Data on a Disk

 Sector header

 Following the data, there is an error-
correction code (ECC).

 Formatting process

 Difference between inner tracks and outer
tracks

 Access time – seek time / rotational delay
(latency time)

 Data buffer/cache

Disk Controller
Processor Main memory

System bus

Figure 5.31. Disks connected to the system bus.

Disk controller

Disk drive Disk drive

Disk Controller

 Seek

 Read

 Write

 Error checking

RAID Disk Arrays

 Redundant Array of Inexpensive Disks

 Using multiple disks makes it cheaper for

huge storage, and also possible to improve

the reliability of the overall system.

 RAID0 – data striping

 RAID1 – identical copies of data on two disks

 RAID2, 3, 4 – increased reliability

 RAID5 – parity-based error-recovery

Optical Disks

Aluminum Acrylic Label

(a) Cross-section

Polycarbonate plastic

Source Detector Source Detector Source Detector

No reflection

Reflection Reflection

Pit Land

1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0

(c) Stored binary pattern

Figure 5.32. Optical disk.

Pit Land

0 1 0 0

(b) Transition from pit to land

Optical Disks

 CD-ROM

 CD-Recordable (CD-R)

 CD-ReWritable (CD-RW)

 DVD

 DVD-RAM

Magnetic Tape Systems

Figure 5.33. Organization of data on magnetic tape.

File
mark

File
mark

File

File gap Record
gap

Record Record Record
gap

7 or 9
bits

•
•
•
•

•
•
•
•

UNIT-V

Chapter 4. Input/Output

Organization

374

Overview

375

 Computer has ability to exchange data with

other devices.

 Human-computer communication

 Computer-computer communication

 Computer-device communication

 …

Accessing I/O Devices

376

Single Bus

Processor

Memory

I/O device 1

I/O device n

Bus

Figure 4.1. A single-bus structure.

377

Memory-Mapped I/O

378

 When I/O devices and the memory share the same

address space, the arrangement is called memory-

mapped I/O.

 Any machine instruction that can access memory

can be used to transfer data to or from an I/O device.

Move DATAIN, R0 Move R0,

DATAOUT

 Some processors have special In and Out

instructions to perform I/O transfer.

Program-Controlled I/O

379

 I/O devices operate at speeds that are very
much different from that of the processor.

 Keyboard, for example, is very slow.

 It needs to make sure that only after a
character is available in the input buffer of the
keyboard interface; also, this character must
be read only once.

Three Major Mechanisms

380

 Program-controlled I/O – processor polls the

device.

 Interrupt

 Direct Memory Access (DMA)

Interrupts

381

Overview

10

 In program-controlled I/O, the program enters

a wait loop in which it repeatedly tests the

device status. During the period, the

processor is not performing any useful

computation.

 However, in many situations other tasks can

be performed while waiting for an I/O device

to become ready.

 Let the device alert the processor.

Enabling and Disabling
Interrupts

383

 Since the interrupt request can come at any

time, it may alter the sequence of events from

that envisaged by the programmer.

 Interrupts must be controlled.

Enabling and Disabling
Interrupts

384

 The interrupt request signal will be active until

it learns that the processor has responded to

its request. This must be handled to avoid

successive interruptions.

 Let the interrupt be disabled/enabled in the interrupt-

service routine.

 Let the processor automatically disable interrupts before

starting the execution of the interrupt-service routine.

Handling Multiple Devices

385

 How can the processor recognize the device requesting an
interrupt?

 Given that different devices are likely to require different
interrupt-service routines, how can the processor obtain the
starting address of the appropriate routine in each case?

 (Vectored interrupts)

 Should a device be allowed to interrupt the processor while
another interrupt is being serviced?

 (Interrupt nesting)

 How should two or more simultaneous interrupt requests be
handled?

 (Daisy-chain)

Vectored Interrupts

386

 A device requesting an interrupt can identify

itself by sending a special code to the

processor over the bus.

 Interrupt vector

 Avoid bus collision

Interrupt Nesting

387

 Simple solution: only accept one interrupt at a time, then disable
all others.

 Problem: some interrupts cannot be held too long.

 Priority structure

Controlling Device Requests

388

 Some I/O devices may not be allowed to
issue interrupt requests to the processor.

 At device end, an interrupt-enable bit in a
control register determines whether the
device is allowed to generate an interrupt
request.

 At processor end, either an interrupt enable
bit in the PS register or a priority structure
determines whether a given interrupt request
will be accepted.

Exceptions

389

 Recovery from errors

 Debugging

 Trace

 Breakpoint

 Privilege exception

Use of Interrupts in Operating
Systems

390

 The OS and the application program pass

control back and forth using software

interrupts.

 Supervisor mode / user mode

 Multitasking (time-slicing)

 Process – running, runnable, blocked

 Program state

DIRECT MEMORY ACCESS

• The transfer of data between a fast storage device such as

magnetic disk and memory is often limited by the speed of the

CPU.

• Removing the CPU from the path and letting the peripheral

device manage the memory buses directly would improve the

speed of transfer.

 This transfer technique is called direct memory access(DMA)

DMA Function

• During DMA transfer, the CPU is idle and has no control of

the memory buses.

• A DMA controller takes over the buses to manage the transfer

directly between the I/O devices and memory.

• The CPU may be placed in an idle state in variety of ways.

• One common method exclusively used in microprocessors is

to disable the Buses through Special control signals.

DIRECT MEMORY ACCESS

• BUS REQUEST

 The bus request(BR) input is used by the DMA controller to

request the CPU to relinquish control of the buses.

• BUS GRANT

 The CPU activates the bus grant(BG) output to inform the

external DMA that the buses are in the high-impedance state

• BUS TRANSFER

 In DMA burst transfer, a block sequence consisting of a

number of memory words is transferred in a continuous burst while

the DMA controller is mater of the memory buses.

• CYCLE STEALING

 An alternative technique called cycle stealing allows the

DMA controller to transfer one data word at a time, after which it

must return control of the buses to the CPU.

 DMA Controller
• The DMA controller needs the usual circuits of an interface to

communicate with the CPU and I/O device.

• The address register and lines are used for direct

communication with the memory.

• The word count register specifies the number of words that

must be transferred. The data transfer may be done directly

between the device and memory under control of the DMA.

Working Of DMA Controller

• The unit communicate with the CPU via the data bus and control lines. The
registers in the DMA are selected by the CPU through the address bus by
enabling the DS(DMA select) and RS(register select) inputs. The RD(read)
and WR(write) input are bidirectional.

• When the BG(bus grant) input is 0,the CPU can communicate with the
DMA registers through the data bus to read from or write to the DMA
registers. when BG=1,the CPU has relinquished the buses and the DMA
can communicate directly with the memory by specifying an address in the
address bus and activating the RD or WR control.

• The DMA communicate with the external peripheral through the request
and acknowledge lines by using a prescribed handshaking procedure. The
DMA controller has three registers: an address register, a word count
register, and a control register.

• The address register contains an address to specify the desired location in
memory. The address bits go through bus buffers in to the address bus.

 DMA controller working

The CPU initializes the DMA by sending the following

information through the data bus.

1.The starting address of the memory block where data are

available(for read) or where data are to be stored(for write).

2.The word count, which is the number of words in the memory

block.

3.Control to specify the mode of transfer such as read or write.

4.A control to start the DMA transfer.

DMA TRANSFER
• The CPU communicate with the DMA through the address and

data buses as with any interface unit.

• The DMA has its own address, which activates the DS and RS

lines

• The CPU initializes the DMA through the data bus. once the

DMA receives the start control command, it can start the transfer

between the peripheral device and the memory.

Bus Arbitration

398

 The device that is allowed to initiate data
transfers on the bus at any given time is
called the bus master.

 Bus arbitration is the process by which the
next device to become the bus master is
selected and bus mastership is transferred to
it.

 Need to establish a priority system.

 Two approaches: centralized and distributed

Buses

30

Overview

400

 The primary function of a bus is to provide a

communications path for the transfer of

data.

 A bus protocol is the set of rules that govern

the behavior of various devices connected

to the bus as to when to place information

on the bus, assert control signals, etc.

 Three types of bus lines: data, address,

control

 The bus control signals also carry timing

information.

 Bus master (initiator) / slave (target)

Discussion

401

 Trade-offs

 Simplicity of the device interface

 Ability to accommodate device interfaces that introduce

different amounts of delay

 Total time required for a bus transfer

 Ability to detect errors resulting from addressing a

nonexistent device or from an interface malfunction

 Asynchronous bus is simpler to design.

 Synchronous bus is faster.

Interface Circuits

402

Function of I/O Interface

403

 Provide a storage buffer for at least one word of
data;

 Contain status flags that can be accessed by the
processor to determine whether the buffer is full or
empty;

 Contain address-decoding circuitry to determine
when it is being addressed by the processor;

 Generate the appropriate timing signals required by
the bus control scheme;

 Perform any format conversion that may be
necessary to transfer data between the bus and the
I/O device.

Parallel Port

40

 A parallel port transfers data in the form of a

number of bits, typically 8 or 16,

simultaneously to or from the device.

 For faster communications

Parallel Port – Input Interface (Keyboard

to Processor Connection)

405

Parallel Port – Output Interface

(Printer to Processor Connection)

406

407

DATAIN

1

SIN

A1

A0

Address
decoder

D7

A2

Input
status

Bus
PA7

PA0

CA

PB7

DAT

AO

UT

PB0 CB1

CB2

SOUT

D1

D0

RS1

RS0

My-address

Handshae
k
control

Master-
Ready

R/ W

A31

Slave-
Ready

46

Figure 4.33. Combined input/output interface circuit.

Recall the Timing Protocol

409

Handshaek
control

Printer
data

Idle

Vali

d Read Load

SOUT

ready

A31

A1

Address
decoder

DATAOUT

D7 Q7 D7

Figure 4.35. A parallel point interface for the bus of Figure 4.25,

with a state-diagram for the timing logic.

status data

D1 Q1

D0 Q0

D0

D0

Timing Logic My-address

R/W

Slave-

Idle

A0

Clock

My-address

Go

Respond
Go=1

49

Serial Port

411

 A serial port is used to connect the processor
to I/O devices that require transmission of
data one bit at a time.

 The key feature of an interface circuit for a
serial port is that it is capable of
communicating in bit-serial fashion on the
device side and in a bit-parallel fashion on
the bus side.

 Capable of longer distance communication
than parallel transmission.

Standard I/O

Interfaces

412

Overview

413

 The needs for standardized interface signals

and protocols.

 Motherboard

 Bridge: circuit to connect two buses

 Expansion bus

 ISA, PCI, SCSI, USB,…

Processor

Bridge

Processor ubs

PCI bus

Main

memory

Additional
memory

CD-ROM

controller

Disk
controller

Disk 1 Disk 2 CD-
ROM

SCSI

controller
USB

controller

Video

K eyboard Game

IDE
disk

SCSI bus

Figure 4.38. An example of a computer system using different interface standards.

ISA

interface

Ethernet
interface

414

