
Unit-III :  Algebraic Structures 

Algebraic Structures:  

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and their 

compilation, Groups: Definitions and Examples, Subgroups and Homomorphism͛s, Group Codes. 

Lattices and Boolean algebra:  

Lattices and Partially Ordered sets, Boolean algebra. 

3.1  Algebraic systems 

N = {ϭ,Ϯ,ϯ,ϰ,…..  } = Set of all natural numbers. 

        Z = { 0,  ± ϭ,  ± Ϯ,  ± ϯ,  ± ϰ ,  ….. } = Set of all integers. 

        Q = Set of all rational numbers.  

        R = Set of all real numbers.  

Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a 

non- empty set A, if 

        a * b ∈ A     for all     a, b ∈ A    (Closure property). 

      Ex: The set N is closed with respect to addition and multiplication 

              but not w.r.t subtraction and division. 

3.1.1  Algebraic System: A set   A with one or more binary(closed) operations defined on it is 

called an algebraic system. 

        Ex:  (N, + ),   (Z, +,  – ),  (R, +, . , –  ) are algebraic systems. 

3.1.2 Properties 

Associativity:  Let  *  be a binary operation on a set A.  

          The operation  *  is said  to be associative in A if  

          (a * b) * c = a *( b * c)   for all a, b, c in A 

      Identity: For an algebraic system (A, *), an element ͚e͛ in A is said to be an identity element of A if            

a * e = e * a = a    for all   a ∈ A. 

Note: For an algebraic system (A, *), the identity element, if exists, is unique. 

Inverse:  Let (A, *) be an algebraic system with identity ͚e͛. Let  a  be an element in A. An element  b  

is said to be inverse of A if 

                 a * b = b * a = e 

 



3.1.3 Semi groups 

 Semi Group: An algebraic system (A, *) is said to be a semi group if 

                             1. * is closed operation on A.  

                             2. * is an associative operation, for all a, b, c in A. 

Ex. (N, +) is a semi group.  

Ex. (N, .) is a semi group. 

Ex. (N,  –  ) is not a semi group.  

3.1.4 Monoid 

 An algebraic system (A, *) is said to be a monoid  if the following conditions are satisfied. 

        1)   *  is a closed operation in A. 

        2)   *  is an associative operation in A. 

        3)  There is an identity in A. 

Ex. Show that the set  ͚N͛ is a monoid with respect to multiplication. 

Solution:  Here, N = {ϭ,Ϯ,ϯ,ϰ,……} 

    1. Closure property : We know that product of two natural numbers is again a natural number. 

    i.e., a.b = b.a    for all a,b ∈ N 

    ∴  Multiplication is a closed operation. 

    2. Associativity : Multiplication of natural numbers is associative. 

             i.e., (a.b).c = a.(b.c)    for all a,b,c ∈ N 

     3. Identity :  We have,  1 ∈ N  such that  

              a.1 = 1.a = a  for all a ∈ N. 

            ∴ Identity element exists, and 1 is the identity element. 

 Hence, N is a monoid with respect to multiplication. 

Examples 

Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers  

         and  the operation * is  defined by     n * m  =  maximum of (n, m).    

        Show that (Z, *) is a semi group.  

        Is (Z, *) a monoid ?.  Justify your answer. 



Solution:  Let a , b  and c  are any three integers.  

Closure property:  Now,  a * b =  maximum of (a, b) ∈ Z    for all a,b ∈ Z  

 Associativity : (a * b) * c  =  maximum of {a,b,c} =  a * (b * c) 

   ∴ (Z, *) is a semi group. 

 Identity :  There is no integer x such that  

      a * x =  maximum of (a, x)  = a     for all a ∈ Z  ∴ Identity element does not exist. Hence, (Z, *) is not a monoid. 

Ex. Show that the set of all strings ͚S͛ is a monoid  under the operation ͚concatenation of 

strings͛.  

        Is S  a group w.r.t the above operation? Justify your answer. 

Solution:   Let us denote the operation  

                    ͚concatenation of strings͛  by  + . 

       Let  s1, s2, s3 are three arbitrary strings in S. 

  Closure property:  Concatenation of two strings is again a string. 

                              i.e.,  s1+s2  ∈ S  

 Associativity: Concatenation of strings is associative. 

                          (s1+ s2 ) + s3 = s1+ (s2 + s3 )  

Identity: We have null string , l ∈ S  such that  s1 + l = S. 

 ∴ S is a monoid. 

Note:  S is not a group, because the inverse of a non empty string does not exist under 

concatenation of strings. 

 

3.2 Groups 

Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied. 

      1) *  is a closed operation.  

      2) *  is an associative operation. 

      3)  There is an identity in G. 

      4)  Every element in G has inverse in G. 



 Abelian group (Commutative group): A group (G, *) is 

           said to be abelian (or commutative)  if  

                    a * b  = b * a     "a, b ∈ G.             

Properties 

  In a Group (G, * ) the following properties hold good 

1. Identity element is unique. 

2. Inverse of an element is unique. 

3. Cancellation laws hold good 

            a * b = a * c    => b =  c     (left cancellation law) 

            a * c = b * c    => a =  b     (Right cancellation law) 

 4.  (a * b) -1   =   b-1 * a-1  

In a group, the identity element is its own inverse. 

Order of a group  : The number of elements in a group is called order of the group.  

Finite group:  If the order of a group G  is finite, then G is called a finite group. 

Ex1 . Show that, the set of all integers is an abelian group with respect  to  addition. 

Solution:  Let  Z = set of all integers. 

                        Let a, b, c are any three elements of Z. 

1. Closure  property : We know that, Sum of two integers is again an integer. 

              i.e.,   a + b ∈ Z    for all a,b ∈ Z 

2. Associativity:  We know that addition of integers is associative. 

                      i.e., (a+b)+c = a+(b+c)    for all a,b,c ∈ Z. 

3. Identity :  We have   0 ∈ Z   and   a + 0 = a   for all a ∈ Z . 

                ∴  Identity element exists, and  ͚0͛ is the identity element. 

4. Inverse:  To each  a ∈ Z , we have  – a  ∈ Z  such that  

                    a + ( – a  ) = 0  

    Each element in Z has an inverse. 

 5. Commutativity: We know that addition of integers is commutative. 

            i.e.,   a + b =  b +a     for all a,b ∈ Z. 

          Hence,  ( Z , + ) is an abelian group. 



 

Ex2 . Show that  set of all non zero real numbers is a group with respect to  multiplication . 

          Solution:  Let  R* = set of all non zero real numbers. 

                        Let a, b, c are any three elements of R* . 

1. Closure  property : We know that, product of two nonzero real numbers is again a nonzero real 

number . 

              i.e.,   a . b ∈ R* for all a,b ∈ R* . 

2. Associativity:  We know that multiplication of real numbers is    

                            associative. 

                      i.e., (a.b).c = a.(b.c)    for all a,b,c ∈ R* . 

3. Identity :  We have   1 ∈ R*  and   a .1 = a   for all a ∈ R* . 

        ∴  Identity element exists, and  ͚1͛ is the identity element. 

4. Inverse:  To each  a ∈ R*  , we have  1/a  ∈ R* such that  

                a .(1/a) = 1         i.e.,  Each element in  R*  has an inverse. 

       5.Commutativity:  We know that multiplication of real numbers is    

                            commutative. 

          i.e.,   a . b =  b . a     for all a,b ∈ R*. 

          Hence,  ( R* ,  . ) is an abelian group. 

   Note: Show that set of all real numbers ͚R͛ is not a group with respect to multiplication. 

                Solution:  We have  0 ∈ R . 

                      The multiplicative inverse of  0 does not exist. 

                      Hence. R is not a group. 

Example:  Let S be a finite set, and let F(S) be the collection of all functions f: S → S under 

the operation   of composition of functions, then show that F(S) is a monoid. 

      Is S  a group w.r.t the above operation? Justify your answer. 

Solution:  

       Let  f1, f2, f3 are three arbitrary functions on S. 

  Closure property:  Composition of two functions on S  is again a function on S. 

                              i.e.,  f1o f2  ∈ F(S) 

 Associativity: Composition of functions is associative. 



                         i.e., (f1 o f2 ) o f3 = f1 o (f2 o f3 ) 

Identity: We have identity function I : S→S   

                    such that  f1 o I = f1. 

                 ∴   F(S) is a monoid. 

Note:  F(S) is not a group, because the inverse of a non bijective function on S does not 

exist.  

Ex. If M is set of all non singular matrices of order ͚n x n͛. 
      then show that M  is a group w.r.t. matrix multiplication.  

      Is (M, *) an abelian group?.   Justify your answer. 

Solution:    Let A,B,C ∈ M. 

1.Closure  property : Product of two non singular matrices is again a non singular matrix, 

because 

         ½AB½ = ½A½ . ½B½ ¹ 0  ( Since, A and B are nonsingular)  

              i.e.,   AB ∈ M for all A,B ∈ M . 

2. Associativity:  Marix multiplication is  associative. 

                      i.e., (AB)C = A(BC)    for all A,B,C ∈ M . 

3. Identity :  We have   In ∈ M  and   A In = A  for all A ∈ M . 

        ∴  Identity element exists, and  ͚In͛ is the identity element. 

4. Inverse:  To each  A ∈ M, we have  A-1  ∈ M such that  

                A A-1 = In        i.e.,  Each element in  M  has an inverse. ∴  M is a group w.r.t. matrix multiplication. 

  We know that, matrix multiplication is not commutative. 

   Hence, M is not an abelian group. 

Ex. Show that the set of all positive rational  numbers forms an abelian 

       group under the composition * defined by  

           a * b = (ab)/2 . 

Solution: Let A = set of all positive rational numbers. 

       Let a,b,c be any three elements of A. 

1. Closure property:   We know that, Product of two positive rational numbers is again a 

rational number. 



      i.e., a *b ∈ A for all a,b ∈ A . 

2. Associativity:     (a*b)*c = (ab/2) * c  =  (abc) / 4 

                              a*(b*c)  = a * (bc/2)  =  (abc) / 4 

3. Identity :  Let  e  be the identity element. 

                   We haǀe   a*e = ;a eͿ/Ϯ  …;ϭͿ  , BǇ the defiŶitioŶ of * 

                   agaiŶ,        a*e = a       …..;ϮͿ , SiŶĐe e is the ideŶtitǇ. 

     From (1)and (2),  (a e)/2 = a     ⇒ e = 2   and 2 ∈ A . ∴  Identity element exists, and  ͚2͛ is the identity element in A. 

4. Inverse:   Let a ∈ A  

             let us suppose b is inverse of a. 

            Noǁ,  a * ď = ;a ďͿ/Ϯ  ….;ϭͿ    ;BǇ defiŶitioŶ of iŶǀerse.Ϳ 

           AgaiŶ, a * ď = e = Ϯ  …..;ϮͿ     ;BǇ defiŶitioŶ of iŶǀerseͿ 

    From (1) and (2), it follows that  

             (a b)/2  =  2 

         =>         b =  (4 / a)  ∈ A  ∴ (A ,*) is a group. 

Commutativity:    a * b =  (ab/2) = (ba/2) = b * a 

Hence, (A,*) is an abelian group. 

Ex. Let R be the set of all real numbers and * is a binary operation  defined by a * b = a + b 

+ a b. Show that  (R, *) is a monoid. 

         Is (R, *) a group?. Justify your answer. 

Try for yourself. 

         identity = 0 

         inverse of   a =    –  a / (a+1) 

Eǆ. If  E  = { Ϭ, ± Ϯ, ± ϰ, ± 6, ……}, theŶ the algeďraiĐ struĐture ;E, +Ϳ is 

a)   a semi group but not a monoid  

b)   a monoid but not a group. 

c)  a group but not an abelian group. 



d)  an abelian group. 

Ans; d 

Ex. Let A = Set of all rational numbers ͚x͛ such that  0 < x £ 1. 

     Then with respect to ordinary multiplication, A is   

a)   a semi group but not a monoid  

b)   a monoid but not a group. 

c)  a group but not an abelian group. 

d)  an abelian group. 

Ans. b 

Ex. Let C = Set of all non zero complex numbers .Then with respect to multiplication, C is  

a)   a semi group but not a monoid  

b)   a monoid but not a group. 

c)  a group but not an abelian group. 

d)  an abelian group. 

Ans. d 

Ex. In a group (G, *) ,  Prove that the identity element is unique.  

Proof :  a)  Let e1 and e2 are two identity elements in G. 

         Now,    e1 * e2  =  e1     …;ϭͿ   ;siŶĐe e2 is the identity) 

          Again,  e1 * e2  =  e2     …;ϮͿ   ;siŶĐe e1 is the identity) 

         From (1) and (2), we have       e1 = e2   

   ∴  Identity element in a group is unique. 

Ex. In a group (G, *) ,  Prove that the inverse of any element is unique.  

Proof:  Let   a ,b,c ∈G   and   e is the identity in G. 

Let us suppose, Both  b and c are inverse elements of  a . 

Noǁ,   a * ď = e   …;ϭͿ   ;SiŶĐe, ď is iŶǀerse of a Ϳ 

AgaiŶ, a * Đ = e   …;ϮͿ   ;SiŶĐe, Đ is also iŶǀerse of a Ϳ 

From (1) and (2), we have 

   a * b = a * c    



 b = c      (By left cancellation law) 
In a group, the inverse of any element is unique. 

Ex. In a group (G, *) , Prove that  

  (a * b)-1   =   b-1 * a-1  for all a,b ∈G. 

Proof :   Consider, 

     (a * b) * ( b-1 * a-1)  

            =  (a * ( b *  b-1 ) * a-1)       (By associative property). 

            =  (a * e * a-1)                    ( By inverse property) 

            =  ( a * a-1)                         ( Since, e is identity) 

            =  e                                     ( By inverse property) 

Similarly, we can show that 

(b-1 * a-1) * (a * b)  = e 

Hence, (a * b)-1   =   b-1 * a-1 . 

Ex.    If (G, *) is a group and a ∈ G  such that  a * a = a , 

         then show that  a = e , where e is identity element in G. 

Proof:  Given that,   a * a  = a  

 a * a = a * e      ( Since, e is identity in G) 
 a  =  e         ( By left cancellation law) 
Hence, the result follows. 

Ex.   If  every element of a group is its own inverse, then show that 

        the group must be abelian . 

Proof:  Let (G, *) be a group.  

Let a and b are any two elements of G. 

Consider the identity, 

       (a * b)-1   =   b-1 * a-1  

  (a * b )   =     b * a     ( Since each element of G is its own inverse) 
Hence,  G is abelian. 

Note:    a2  = a * a 

             a3  = a * a * a    etc. 

Ex. In a group (G, *),   if   (a * b)2 = a2 * b2     "a,b ∈ G   

       then show that G is abelian group. 



Proof:  Given that  (a * b)2 = a2 * b2  

 (a * b) * (a * b) =  (a * a )* (b * b)  
 a *( b * a )* b =  a * (a * b) * b   ( By associative law) 
 ( b * a )* b =   (a * b) * b       ( By left cancellation law) 
 ( b * a ) =   (a * b)        ( By right cancellation law) 

Hence, G is abelian group. 

3.2.2 Finite groups 

Ex. Show that  G = {1, -1} is an abelian group under multiplication.  

Solution: The composition table of G is  

                     .      1      – 1     

                    1      1      – 1  

                 – 1   – 1         1 

1. Closure property:   Since all the entries of the composition table are the elements of 

the given set, the set G is closed under multiplication. 

2. Associativity:  The elements of G are real numbers, and we know that multiplication of 

real numbers is  associative.  

3. Identity :  Here,  1  is the identity element and  1∈ G.  

4. Inverse: From the composition table, we see that the inverse elements of  

      1 and  – 1  are  1 and  – 1 respectively. 

Hence, G is a group w.r.t multiplication. 

5. Commutativity:  The corresponding rows and columns of the table are identical. 

Therefore the binary operation  .  is commutative.  

Hence, G is an abelian group w.r.t. multiplication.. 

Ex. Show that  G = {1, w, w2} is an abelian group under multiplication.    

        Where 1, w, w2 are cube roots of unity. 

Solution: The composition table of G is  

                        .      1        w     w2 

                    1         1        w     w2 

                    w             w       w2       1 

                    w2           w2          1      w 



1. Closure property:   Since all the entries of the composition table are the elements of 

the given set, the set G is closed under multiplication. 

2. Associativity:  The elements of G are complex numbers, and we know that 

multiplication of complex numbers is  associative.  

3. Identity :  Here,  1  is the identity element and  1∈ G.  

4. Inverse: From the composition table, we see that the inverse elements of  

      1 w, w2 are  1, w2, w respectively. 

Hence, G is a group w.r.t multiplication. 

5. Commutativity: The corresponding rows and columns of the table are identical. 

Therefore the binary operation  .  is commutative.  

Hence, G is an abelian group w.r.t. multiplication. 

Ex. Show that  G = {1,  –1,  i, –i } is an abelian group under multiplication.    

Solution: The composition table of G is  

                        .      1        –1       i      -i 

                    1         1        -1      i      - i 

                   -1            -1          1        -i      i 

                    i                 i                -i     -1     1 

                   -i         -i          i      1      -1 

1. Closure property:   Since all the entries of the composition table are the elements of 

the given set, the set G is closed under multiplication. 

2. Associativity:  The elements of G are complex numbers, and we know that 

multiplication of complex numbers is  associative.  

3. Identity :  Here,  1  is the identity element and  1∈ G.  

4. Inverse: From the composition table, we see that the inverse elements of  

      1 -1, i, -i   are  1, -1, -i, i   respectively. 

5. Commutativity: The corresponding rows and columns of the table are identical. 

Therefore the binary operation  .  is commutative. Hence, (G, .) is an abelian group. 

Modulo systems. 

Addition modulo m    (  +m ) 

let  m is a positive integer. For any two positive integers a and b 



  a  +m  b  =   a + b    if   a + b < m 

  a  +m  b  =      r        if   a + b ³ m    where  r is the remainder obtained    

                                                                      by dividing (a+b) with m. 

Multiplication modulo p   ( *m)  

let  p is a positive integer. For any two positive integers a and b 

  a  *m b  =   a b        if   a b < p 

  a   *m b  =      r        if   a b ³ p    where  r is the remainder obtained    

                                                                      by dividing (ab) with p. 

Ex.  3  *5  4  = 2    ,      5   *5  4  = 0       ,    2   *5  2  = 4  

 

Example : The set G = {0,1,2,3,4,5} is a group with respect to addition modulo 6. 

Solution: The composition table of G is  

                     +6       0       1       2      3     4     5    

                   0          0       1       2      3      4     5  

                   1               1       2       3      4      5     0 

                   2               2           3       4      5      0     1   

                   3          3       4       5      0      1     2 

                   4          4       5       0      1      2     3 

                   5          5       0       1      2      3     4  

1. Closure property:   Since all the entries of the composition table are the elements of the 

given set, the set G is closed under  +6  . 

2. Associativity:  The binary operation +6 is  associative in G. 

          for ex.   (2 +6  3) +6  4    = 5 +6 4 = 3    and 

                        2 +6 ( 3 +6  4 )  = 2 +6 1 = 3 

3. Identity :  Here, The first row of the table coincides with the top row.   The element 

heading that row , i.e., 0 is the identity element.  

4. . Inverse: From the composition table, we see that the inverse elements of  0, 1, 2, 3, 4. 5  

are  0, 5, 4, 3, 2, 1   respectively. 



5. Commutativity:  The corresponding rows and columns of the table are identical. Therefore 

the binary operation  +6  is commutative. 

 Hence, (G, +6 ) is an abelian group. 

Example : The set G = {1,2,3,4,5,6} is a group with respect to multiplication    

     modulo 7. 

Solution: The composition table of G is  

                     *7       1       2      3     4      5      6    

                   1          1       2      3      4      5      6  

                   2               2       4       6      1     3      5 

                   3               3           6       2      5     1      4  

                   4          4       1       5      2      6     3 

                   5          5       3       1      6      4     2 

                   6          6       5       4      3      2     1  

1. Closure property:   Since all the entries of the composition table are the elements of the 

given set, the set G is closed under *7 . 

2. Associativity:  The binary operation *7  is  associative in G. 

          for ex.   (2 *7 3) *7 4    = 6 *7 4 = 3    and 

                        2 *7 ( 3 *7 4 )  = 2 *7 5 = 3 

3. Identity :  Here, The first row of the table coincides with the top row.   The element 

heading that row , i.e., 1 is the identity element.  

4. . Inverse: From the composition table, we see that the inverse elements of  1, 2, 3, 4. 5 6 

are  1, 4, 5, 2, 5, 6   respectively. 

5. Commutativity:  The corresponding rows and columns of the table are identical. Therefore 

the binary operation *7 is commutative. 

 Hence, (G, *7 ) is an abelian group. 

More on finite groups 

  In a group with 2 elements, each element is its own inverse  

In a group of even order there will be at least one element (other than identity element) 

which is its own inverse  

The set G = {Ϭ,ϭ,Ϯ,ϯ,ϰ,…..ŵ-1} is a group with respect to addition modulo m. 



The set G = {ϭ,Ϯ,ϯ,ϰ,….p-1} is a group with respect to multiplication    

     modulo p, where p is a prime number. 

Order of an element of a group: 

Let (G, *) be  a group. Let ͚a͛ be an element of  G. The smallest integer n such that an = e is 

called order of ͚a͛. If no such number exists then the order is infinite. 

Ex. G = {1, -1, i, -i } is a group w.r.t  multiplication.The order   –i   is      a) 2               b) 3           

c) 4           d) 1 

 Ex.  Which of the following is not true. 

a)  The order of every element of a finite group is finite and is a divisor of  the order of the 

group. 

       b) The order of an element of a group is same as that of its inverse. 

c) In the additive group of integers the order of every element except  

        0 is infinite 

d) In the infinite multiplicative group of nonzero rational numbers the 

      order of every element  except 1 is infinite. 

Ans. D 

3.3 Sub groups 

Def.  A non empty sub set H of a group (G, *) is a sub group of G,  

          if  (H, *) is a group. 

    Note:  For any group {G, *}, {e, * } and (G, * ) are trivial sub groups. 

Ex.  G = {1, -1, i, -i } is a group w.r.t multiplication. 

                 H1 =  { 1, -1 } is a subgroup of G . 

                 H2 =  { 1 }    is a  trivial subgroup of G. 

Ex.  ( Z , + ) and (Q , + ) are sub groups of the group (R +). 

Theorem: A non empty sub set H of a group (G, *) is a sub group of G    iff 

i)            a * b ∈ H    " a, b ∈ H 

ii)           a-1 ∈ H        " a ∈ H 

Theorem 



Theorem: A necessary and sufficient condition for a non empty subset H of a group  (G, *) to 

be a  sub group is that   

       a ∈ H,  b ∈ H   => a * b-1 ∈ H. 

Proof:  Case1:  Let (G, *) be a group and H is a subgroup of G 

        Let a,b ∈ H   => b-1 ∈ H      ( since H is is a group) 

                         => a * b-1 ∈ H.           ( By closure property in H) 

Case2: Let H be a non empty set of  a group (G, *). 

                   Let    a * b-1 ∈ H      " a, b ∈ H  

Now,            a * a-1 ∈ H     ( Taking  b = a ) 

                    => e ∈ H      i.e., identity exists in H. 

Now, e ∈ H,  a ∈ H     => e * a-1 ∈ H 

                                         =>    a-1    ∈ H     ∴  Each element of H  has inverse in H. 

            Further, a ∈ H,  b ∈ H  ⇒ a ∈ H,  b-1 ∈ H  

            ⇒ a * (b-1)-1 ∈ H. 

            ⇒ a * b ∈ H.     ∴ H is closed w.r.t   * . 

Finally, Let a,b,c ∈ H 

               ⇒ a,b,c ∈ G  ( since H Í G ) 

               ⇒ (a * b) * c = a * (b * c)  

              ∴ * is associative in H 

Hence, H is a subgroup of G. 

Theorem: A necessary and sufficient condition for a non empty finite subset H of a group (G, 

*)   to be a sub group is that  

         a * b  ∈ H   for all a, b ∈ H 

Proof:  Assignment . 

Example :  Show that the intersection of two sub groups of a group G  is again a sub group 

of G. 

Proof: Let (G, *) be a group.  



Let H1 and H2 are two sub groups of G. 

Let   a , b ∈ H1 ∩ H2 . 

Now, a , b ∈ H1   ⇒ a * b-1 ∈ H1   ( Since, H1 is a subgroup of G) 

again, a , b ∈ H2   ⇒ a * b-1 ∈ H2   ( Since, H2 is a subgroup of G) ∴  a * b-1 ∈ H1 ∩ H2 . 

Hence, H1 ∩ H2  is a subgroup of G . 

Ex. Show that the union of two sub groups of a group G  need not be  

      a sub group of G. 

Proof:  Let G be an additive group of integers. 

Let   H1 = { Ϭ, ±Ϯ,  ±ϰ,  ±6,  ±ϴ, …..} 

and  H2 = { Ϭ, ±ϯ,  ±6,  ±ϵ,  ±ϭϮ, …..} 

Here, H1 and H2 are groups w.r.t addition. 

Further, H1 and H2 are subsets of G. ∴  H1 and H2 are sub groups of G. 

H1 U H2 = { Ϭ, ±Ϯ,  ±ϯ,  ±ϰ,  ±6, …..} 

Here, H1 U H2   is not closed w.r.t addition. 

For ex.   2 , 3 ∈ G 

But,    2 + 3 = 5   and   5 does not belongs to H1 U H2 . 

Hence, H1 U H2  is not a sub group of G. 

Homomorphism and Isomorphism. 

Homomorphism : Consider the groups  ( G,  *)  and ( G1, ⊕ ) 

       A function  f : G → G1 is called a homomorphism if  

                   f ( a * b) = f(a) ⊕  f (b) 

Isomorphism : If a homomorphism f : G → G1  is a bijection then f is called isomorphism 

between G and G1 . 

        Then  we write   G  ≡ G1 

 



Example :  Let R be a group of all real numbers under addition and R+ be a group of all  

positive real numbers under  multiplication.  Show that the mapping    f : R → R+   defined by   

f(x)  = 2x  for all x ∈ R  is  an isomorphism. 

Solution:  First, let us show that   f is a homomorphism. 

 Let a , b ∈ R  . 

Now,  f(a+b) = 2a+b 

                      = 2a   2b 

                      = f(a).f(b) ∴ f is an homomorphism. 

Next, let us prove that  f  is a Bijection.  

For any a , b ∈ R,   Let,   f(a) = f(b) 

                                       => 2a   =  2b 

                                                               => a   =  b  

                      ∴ f  is  one.to-one. 

Next, take any  c ∈ R+. 

Then   log2 c ∈ R   and f (log2 c ) = 2 log2 c = c. ⇒ Every element in R+ has a pre image in R. 

i.e., f is onto.  ∴ f is a bijection. 

Hence, f is an isomorphism. 

Ex.  Let R be a group of all real numbers under addition and R+ be a group of all  positive real 

numbers under  multiplication.  Show that the mapping    f : R+ → R   defined by   f(x)  = log10 x  

for all x ∈ R  is  an isomorphism. 

Solution:  First, let us show that f is a homomorphism. 

 Let a , b ∈ R+ . 

Now,  f(a.b) = log10 (a.b) 

                       = log10 a  +  log10 b 

                       = f(a) + f(b) ∴ f is an homomorphism. 



Next, let us prove that  f  is a Bijection.  

For any a , b ∈ R+ ,   Let,   f(a) = f(b) 

                                       => log10 a   =  log10 b 

                                                               => a   =  b  

                      ∴ f  is  one.to-one. 

Next, take any  c ∈ R. 

Then   10c ∈ R   and f (10c) = log10 10c  = c. ⇒ Every element in R  has a pre image in R+ . 

i.e., f is onto.  ∴ f is a bijection. 

Hence, f is an isomorphism. 

Theorem: Consider the groups  ( G1,  *)  and ( G2, ⊕ ) with identity elements e1
 and e2  

respectively. If f  : G1 → G2   is a group homomorphism,  then prove that 

       a)  f(e1)  =  e2           

       b)  f(a-1)  = [f(a)]-1 

       c)  If  H1 is a sub group of G1 and  H2 = f(H1),  

             then   H2 is a sub group of G2.  

       d) If  f  is an isomorphism from  G1 onto G2, 

                        then  f –1  is an   isomorphism  from G2 onto G1. 

 

Proof:  a)  we have in G2,  

        e2 ⊕  f(e1)  = f (e1)                   ( since, e2 is identity in G2) 

                         = f (e1 * e1)                 ( since, e1 is identity in G1) 

                         = f(e1) ⊕  f(e1)        ( since f is a homomorphism) 

                     e2 = f(e1)                    ( By right cancellation law )  

b) For any a ∈ G1, we have 

          f(a) ⊕  f(a-1) = f (a * a-1) = f(e1)  = e2 

and    f(a-1) ⊕  f(a) = f (a-1 * a) = f(e1)  = e2 



∴  f(a-1) is the inverse of  f(a) in G2 

        i.e.,  [f(a)]-1 = f(a-1)  

c) H2 =  f (H1)  is the image of H1 under f; this is a subset of G2. 

 Let  x , y ∈ H2. 

Then  x = f(a) ,  y = f(b)  for some  a,b ∈H1 

Since, H1is a subgroup of G1, we have a * b-1 ∈ H1. 

Consequently,  

 x ⊕  y-1 =  f(a) ⊕  [f(b)]-1  

             =  f(a) ⊕  f(b-1) 

             =  f (a * b-1) ∈f(H1) = H2 

Hence, H2 is a subgroup of G2. 

d) Since f  : G1 → G2   is an isomorphism, f  is a bijection. ∴  f –1 : G2 → G1   exists and is a bijection. 

Let   x, y ∈ G2.     Then   x ⊕  y ∈ G2  

and there exists   a, b ∈ G1   such that x = f(a) and y = f(b). ∴  f –1 (x ⊕  y ) = f –1 (f(a) ⊕  f(b) )  

                        = f –1 (f  (a* b ) ) 

                        =  a * b 

                        =  f –1 (x) * f –1 (y)  

 This shows that  f –1 : G2 → G1 is an homomorphism as well. ∴  f –1 is an isomorphism. 

3.3 Cosets 

If  H is a sub group of( G, * ) and a ∈ G then the set 

                 Ha = { h * a| h ∈ H}is called a right coset of H in G. 

    Similarly    aH = {a * h  |  h ∈ H}is called a left coset of H is G.   

Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint. 

2) Let H be a sub group of G. Then the right cosets of H form a partition of G.  i.e., the union 

of all right cosets of a sub group H is equal to G. 



 3) Lagrange͛s theorem: The order of each sub group of a finite group is a divisor of 

the  order of the group. 

 4) The order of every element of a finite group is a divisor of the order of the group. 

5) The converse of the lagrange͛s theorem need not be true. 

Ex. If G is a group of order p, where p is a prime number. Then the number of sub groups of G 

is 

 a) 1  b) 2  c) p – 1  d) p 

 Ans. b 

Ex. Prove that every sub group of an abelian group is abelian. 

Solution: Let (G, * ) be a group and H is a sub group of G. 

Let a , b ∈ H 

 ⇒ a , b ∈ G        ( Since H is a subgroup of G) 

 ⇒ a * b = b * a   ( Since G is an abelian group) 

Hence, H is also abelian. 

State and prove Lagrange’s Theorem 

Lagrange͛s theorem: The order of each sub group H of a finite  

       group G  is a divisor of the  order of the group. 

Proof:  Since G is finite group, H is finite. 

Therefore, the number of cosets of H in G is finite. 

Let Ha1,Ha2, …,Har be the distinct right cosets of H in G. 

Then, G = Ha1UHa2U …, UHar  

So that  O(G) = O(Ha1)+O(Ha2Ϳ …+ O;Har). 

But, O(Ha1) = O(Ha2Ϳ = …..  = O;Har) = O(H) ∴ O;GͿ = O;HͿ+O;HͿ …+ O;HͿ. ;r terŵsͿ 

             = r . O(H) 

This shows that O(H) divides O(G). 

 

 



3.4  Lattices and Boolean algebra: Lattices and Partially Ordered sets, Boolean algebra. 

Lattice and its Properties: 

Introduction: 
A lattice is a partially ordered set (L, £) in which every pair of elements a, b Î L has a 

greatest lower bound and a least upper bound. 
The glb of a subset, {a, b} Í L will be denoted by a * b and the lub by a Å b. 
. 

Usually, for any pair a, b Î L, GLB {a, b} = a * b, is called the meet or product and 
LUB{a, b} = a Å b, is called the join or sum of a and b. 

 
Example1 Consider a non-empty set S and let P(S) be its power set. The relation Í 
“contained in” is a partial ordering on P(S). For any two subsets A, BÎ P(S) 
GLB {A, B} and LUB {A, B} are evidently A Ç B and A È B respectively. 

 
Example2 Let I+ be the set of positive integers, and D denote the relation of 

͞division͟ in I+ such that for any a, b Î I+ , a D b iff a divides b. Then (I+, D) is a 

lattice in which 

the join of a and b is given by the least common multiple(LCM) of a and b, that is, 
a Å b = LCM of a and b, and the meet of a and b, that is , a * b is the greatest common divisor 

(GCD) of a and b. 

A lattice can be conveniently represented by a diagram. 
For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the 

relation “division” such that for any a, b Î Sn, a D b iff a divides b. 
Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Å b = lcm(a, b). 
Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in 
Fig(1). Take n=8. Then S8 = {1, 2, 4, 8} 

 
Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), Í ) and 
(S6,D) 

 

have the same diagram viz. fig(1), but the   nodes   are   differently   labeled   . 
  We   observe   that   for   any  partial  ordering relation £ on a set S the 

converse relation ³ is  also partial ordering relation on S. If (S, £) is a lattice 
With meet a  * b and  join a Å b , then (S,  ³  )  is  the  also  a lattice with meet 
a  Å b and join a * b i.e., the GLB and LUB  get interchanged . Thus we  have 
the principle of duality of lattice as follows. 

 
Any statement about lattices involving the operations ^ and V and the relations £ and ³ 

remains true if ^, V, ³ and £ are replaced by V, ^, £ and ³ respectively. 
The operation ^ and V are called duals of each other as are the relations £ and ³.. 

Also, the lattice (L, £) and (L, ³) are called the duals of each other. 

Properties of lattices: 
Let (L, £) be a lattice with the binary operations * and Å then for any a, b, c Î L, 

 
 



 a * a = a  a Å a = a (Idempotent) 

 a * b = b * a , a Å b   = b Å a (Commutative) 

 (a * b) * c = a * (b * c)  ,  (a Å ) Å c = a Å (b Å c) 

    
O (Associative) 

 a * (a Å b) = a , a Å (a * b ) = a (absorption) 
 

For any a ÎL, a £ a, a £ LUB {a, b} => a £ a * (a Å b). On the other 
hand, GLB {a, a Å b} £ a i.e., (a Å b) Å a, hence a * (a Å b) = a 

 
Theorem 1 

Let (L, £) be a lattice with the binary operations * and Å denote the operations of meet and 
join respectively For any a, b Î L, 

a £ b ó a * b = a ó a Å b = b 
Proof 

 
Suppose that a £ b. we know that a £ a, a £ GLB {a, b}, i.e., a £ a * 
b. But from the definition of a * b, we get a * b £ a. 
Hence a £ b => a * b = a  ………………………… (1) 

Now we assume that a * b = a; but is possible only if a £ b, 
that is a * b = a => a £ b   ………………………… (2) 
From (1) and (2), we get a £ b ó a * b = a. 
Suppose a * b = a.   

then b Å (a * b) = b Å a = a Å b ……………………. (3) 
but b Å ( a * b) = b  ( by iv)…………………….. (4) 
Hence a Å b = b, from (3) => (4)   

Suppose aÅ b = b, i.e., LUB {a, b} = b, this is possible only if a£ b, thus(3) => (1) 
(1)  => (2) => (3) => (1). Hence these are equivalent. 

Let us assume a * b = a. 
  

Now (a * b) Å b = a Å b   

We know that by absorption law , (a * b) Å b = b 
so that a Å b = b, therefore a * b = a Þ a Å b = b (5) 
similarly, we can prove a Å b = b Þ a * b = a (6) 
From (5) and (6), we get   

a * b = a Û a Å b = b 
Hence the theorem. 

 
Theorem2 For any a, b, c Î L, where (L, £) is a lattice. b 

£ c => { a * b £ a * c and 
{  a Å b £ a Å c 

 
Proof Suppose b £ c. we have proved that b £ a ó b * c = b…….. (1) 

Now consider 
(a * b ) * (a * c)  = (a * a) * (b * c) (by Idempotent) 

= a * (b * c) 



= a * b (by (1)) 

Thus (a * b) * (a * c ) = a * b which => (a * b ) £ (a * c) Similarly 
(a Å b) Å ( a Å c) = (a Å a) Å (b Å c) 

= a Å (b Å c) 
= a Å c 

which => (a Å b ) £ (a Å c ) 
 

note:These properties are known as isotonicity. 
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