Unit-lll : Algebraic Structures

Algebraic Structures:

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and their
compilation, Groups: Definitions and Examples, Subgroups and Homomorphism’s, Group Codes.

Lattices and Boolean algebra:
Lattices and Partially Ordered sets, Boolean algebra.

3.1 Algebraic systems

N={1,2,3,4,.... } = Set of all natural numbers.
2={0, £1, +2, 3, x4, ... } = Set of all integers.
Q = Set of all rational numbers.
R = Set of all real numbers.

Binary Operation: The binary operator * is said to be a binary operation (closed operation) on a
non- empty set A, if

a*beA forall a be&A (Closure property).
Ex: The set N is closed with respect to addition and multiplication
but not w.r.t subtraction and division.

3.1.1 Algebraic System: A set A with one or more binary(closed) operations defined on it is
called an algebraic system.

Ex: (N,+), (Z,+, =), (R, +,.,— ) are algebraic systems.

3.1.2 Properties

Associativity: Let * be a binary operation on a set A.
The operation * is said to be associative in A if
(@a*b)*c=a*(b*c) foralla,b,cinA

Identity: For an algebraic system (A, *), an element ‘e’ in A is said to be an identity element of A if
a*e=e*a=a forall ae€A.

Note: For an algebraic system (A, *), the identity element, if exists, is unique.

Inverse: Let (A, *) be an algebraic system with identity ‘e’. Let a be an element in A. An element b
is said to be inverse of A if

a*b=b*a=e



3.1.3 Semi groups

Semi Group: An algebraic system (A, *) is said to be a semi group if
1. * is closed operation on A.
2. *is an associative operation, for all a, b, cin A.
Ex. (N, +) is a semi group.
Ex. (N, .) is a semi group.
Ex. (N, — ) is not a semi group.
3.1.4 Monoid
An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
1) * is aclosed operationin A.
2) * is an associative operation in A.
3) There is an identity in A.
Ex. Show that the set ‘N’ is a monoid with respect to multiplication.
Solution: Here, N={1,2,3,4,......}

1. Closure property : We know that product of two natural numbers is again a natural number.

i.e.,,a.b=b.a foralla,beN
~ Multiplication is a closed operation.
2. Associativity : Multiplication of natural numbers is associative.
i.e., (a.b).c=a.(b.c) foralla,b,ceN
3. Identity : We have, 1 € N such that
a.l=1la=a foralla€eN.
~ ldentity element exists, and 1 is the identity element.

Hence, N is a monoid with respect to multiplication.
Examples
Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers
and the operation * is definedby n* m = maximum of (n, m).
Show that (Z, *) is a semi group.

Is (Z, *) a monoid ?. Justify your answer.



Solution: Leta, b and c are any three integers.

Closure property: Now, a * b= maximum of (a,b) €Z foralla,b €Z

Associativity : (a * b) * ¢ = maximum of {a,b,c}= a * (b * ¢)
. (Z, *) is a semi group.
Identity : There is no integer x such that
a*x= maximumof(a,x) =a forallaeZ
-~ Identity element does not exist. Hence, (Z, *) is not a monoid.

Ex. Show that the set of all strings ‘S’ is a monoid under the operation ‘concatenation of
strings’.

IsS agroup w.r.t the above operation? Justify your answer.
Solution: Let us denote the operation
‘concatenation of strings’ by +.
Let s;, sy, s3 are three arbitrary stringsin S.

Closure property: Concatenation of two strings is again a string.

i.e., s1+s; €S
Associativity: Concatenation of strings is associative.
(s1+s2) +s3=51+ (52 +83)
Identity: We have null string, | €S such that s; +1=S.
= Sis a monoid.

Note: Sis not a group, because the inverse of a non empty string does not exist under
concatenation of strings.

3.2 Groups

Group: An algebraic system (G, *) is said to be a group if the following conditions are satisfied.
1) * is a closed operation.
2) * is an associative operation.
3) There is an identity in G.

4) Every elementin G has inverse in G.



Abelian group (Commutative group): A group (G, *) is
said to be abelian (or commutative) if
a*b=b*a "a beaG.
Properties
In a Group (G, * ) the following properties hold good
1. Identity element is unique.
2. Inverse of an element is unique.
3. Cancellation laws hold good
a*b=a*c =>b=c (left cancellation law)
a*c=b*c =>a=b (Rightcancellation law)
4. (a*b)™ = b**a?
In a group, the identity element is its own inverse.
Order of a group : The number of elements in a group is called order of the group.
Finite group: If the order of a group G is finite, then G is called a finite group.
Ex1 . Show that, the set of all integers is an abelian group with respect to addition.
Solution: Let Z =set of all integers.
Let a, b, c are any three elements of Z.

1. Closure property : We know that, Sum of two integers is again an integer.

i.e., a+b€ez foralla,bez
2. Associativity: We know that addition of integers is associative.
i.e., (a+b)+c = a+(b+c) foralla,b,c € 7.
3.ldentity : Wehave 0€Z and a+0=a foralla€eZ.
-~ Identity element exists, and ‘0’ is the identity element.
4. Inverse: To each a €Z,we have —a € Z such that
a+(-a)=0
Each element in Z has an inverse.
5. Commutativity: We know that addition of integers is commutative.
i.e., a+b=b+a forallabez

Hence, (Z, +)is an abelian group.



Ex2 . Show that set of all non zero real numbers is a group with respect to multiplication .
Solution: Let R = set of all non zero real numbers.
Let a, b, c are any three elements of R .

1. Closure property : We know that, product of two nonzero real numbers is again a nonzero real

number.
iie, a.beR forallabe R™.
2. Associativity: We know that multiplication of real numbers is
associative.
i.e., (a.b).c=a.(b.c) forallab,c€R".
3.1dentity: Wehave 1€R and a.l=a foralla€R’.
~ ldentity element exists, and ‘1’ is the identity element.
4. Inverse: Toeach a € R", we have 1/a € R’ such that
a.(1/a)=1 i.e., Each elementin R" has an inverse.
5.Commutativity: We know that multiplication of real numbers is
commutative.
iie, a.b=Db.a forallab€eR".
Hence, (R", .)is an abelian group.
Note: Show that set of all real numbers ‘R’ is not a group with respect to multiplication.
Solution: We have 0 ER.
The multiplicative inverse of 0 does not exist.
Hence. R is not a group.

Example: Let S be a finite set, and let F(S) be the collection of all functions f: S - S under
the operation of composition of functions, then show that F(S) is a monoid.

IsS agroup w.r.t the above operation? Justify your answer.
Solution:
Let f,, f,, f5 are three arbitrary functions on S.

Closure property: Composition of two functions on S is again a function on S.

i.e., fiof, €F(S)

Associativity: Composition of functions is associative.



i.e., (fiof;)ofs=f0(f,0f3)
Identity: We have identity function | : S=>S
such that fio0l="1;.
F(S) is a monoid.

Note: F(S)is not a group, because the inverse of a non bijective function on S does not
exist.

Ex. If M is set of all non singular matrices of order ‘n x n’.
then show that M is a group w.r.t. matrix multiplication.
Is (M, *) an abelian group?. Justify your answer.

Solution: Let A,B,C € M.

1.Closure property : Product of two non singular matrices is again a non singular matrix,

because
%ABY = ¥5AY . %:B¥% 10 ( Since, A and B are nonsingular)
i.,e., ABeEMforallABEM.
2. Associativity: Marix multiplication is associative.
i.e., (AB)C=A(BC) forallAB,CEM.
3. Identity : We have 1, EM and Al,=A forallAEM.
~ ldentity element exists, and ‘I, is the identity element.
4. Inverse: To each A € M, we have A € M such that
AAL= I i.e., Each elementin M has an inverse.
~ Mis a group w.r.t. matrix multiplication.
We know that, matrix multiplication is not commutative.
Hence, M is not an abelian group.

Ex. Show that the set of all positive rational numbers forms an abelian
group under the composition * defined by
a*b=(ab)/2.

Solution: Let A = set of all positive rational numbers.
Let a,b,c be any three elements of A.

1. Closure property: We know that, Product of two positive rational numbers is again a

rational number.



i.e,a*beAforalla,b€eA.
2. Associativity: (a*b)*c =(ab/2) * ¢ = (abc)/4
a*(b*c) =a* (bc/2) = (abc)/ 4
3. Identity : Let e be the identity element.
We have a*e=(ae)/2 ..(1) , By the definition of *
again, a*e=a ... (2), Since e is the identity.
From (1)and (2), (ae)/2=a =e=2 and2€A.
~ ldentity element exists, and ‘2’ is the identity element in A.
4. Inverse: Leta €A
let us suppose b is inverse of a.
Now, a *b =(ab)/2 ...(1) (By definition of inverse.)
Again,a*b=e=2 ... (2) (By definition of inverse)
From (1) and (2), it follows that
(@ab)/2 =2
=> b=(4/a) €A
~ (A ,*)is a group.
Commutativity: a * b= (ab/2)=(ba/2)=b * a
Hence, (A,*) is an abelian group.

Ex. Let R be the set of all real numbers and * is a binary operation definedbya*b=a+b
+ab. Show that (R, *) is a monoid.

Is (R, *) a group?. Justify your answer.
Try for yourself.
identity =0
inverseof a= — a/(a+l)
Ex.If E ={0,%2,%4, %6, ... }, then the algebraic structure (E, +) is
a) asemigroup but not a monoid
b) a monoid but not a group.

c) a group but not an abelian group.



d) an abelian group.
Ans; d

Ex. Let A = Set of all rational numbers ‘x’ such that 0 <x £ 1.
Then with respect to ordinary multiplication, A is

a) asemigroup but not a monoid
b) a monoid but not a group.
c) a group but not an abelian group.
d) an abelian group.
Ans. b
Ex. Let C = Set of all non zero complex numbers .Then with respect to multiplication, Cis
a) asemigroup but not a monoid
b) a monoid but not a group.
c) a group but not an abelian group.
d) an abelian group.
Ans.d
Ex. In a group (G, *), Prove that the identity element is unique.
Proof : a) Let e; and e, are two identity elements in G.
Now, e;*e, = e; ..(1) (since e;isthe identity)
Again, e; *e; = e; ..(2) (since e; is the identity)
From (1) and (2), we have ei;=e;
~ ldentity element in a group is unique.
Ex. In a group (G, *), Prove that the inverse of any element is unique.
Proof: Let a,b,c EG and eisthe identityin G.
Let us suppose, Both b and c are inverse elements of a.
Now, a*b=e ..(1) (Since, bisinverse ofa)
Again,a*c=e ..(2) (Since, cisalsoinverse of a)
From (1) and (2), we have

a*b=a*c



= b=c (By left cancellation law)
In a group, the inverse of any element is unique.

Ex. In a group (G, *), Prove that
(@a*b)? = b'*al foralla,b €G.

Proof : Consider,
(a*b)*(b"*a)

=(a*(b* b')*al) (Byassociative property).

= (a*e*al) ( By inverse property)
= (a*al) ( Since, e is identity)
=e ( By inverse property)

Similarly, we can show that
(b'*a')*(a*b) =e
Hence, (a*b)* = b**al.

Ex. If(G, *)isagroupanda €G suchthat a*a=a,
then show that a =e, where e is identity element in G.

Proof: Giventhat, a*a =a

= a*a=a*e (Since, e isidentity in G)
= a=-c¢e ( By left cancellation law)
Hence, the result follows.
Ex. If every element of a group is its own inverse, then show that
the group must be abelian .
Proof: Let (G, *) be a group.
Let a and b are any two elements of G.
Consider the identity,
(@*b)* = bt*at
= (a*b) = b*a (Sinceeachelement of G is its own inverse)

Hence, G is abelian.

Note: a’ =a*a

a>=a*a*a etc

Ex. Inagroup (G, *), if (a* b)’=a’*b’> "a,beG

then show that G is abelian group.



Proof: Given that (a * b)>=a%* b’

=
=
=
=

(a*b)*(a*b)= (a*a)*(b*b)
a*(b*a)*b=a*(@a*b)*b (Byassociative law)
(b*a)*b= (a*b)*Db ( By left cancellation law)
(b*a)= (a*Db) ( By right cancellation law)

Hence, G is abelian group.

3.2.2 Finite groups

Ex. Show that G ={1, -1} is an abelian group under multiplication.

Solution: The composition table of G is

1 -1
1 1 -1
-1 -1 1

1. Closure property: Since all the entries of the composition table are the elements of

the given set, the set G is closed under multiplication.

2. Associativity: The elements of G are real numbers, and we know that multiplication of
real numbers is associative.

3. Identity : Here, 1 is the identity elementand 1€ G.

4. Inverse: From the composition table, we see that the inverse elements of
land —1 are 1and — 1 respectively.

Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical.
Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication..

Ex. Show that G = {1, w, w’} is an abelian group under multiplication.
Where 1, w, w” are cube roots of unity.

Solution: The composition table of G is

1 W W
1 1 woow
w w w? o1



1. Closure property: Since all the entries of the composition table are the elements of

the given set, the set G is closed under multiplication.

2. Associativity: The elements of G are complex numbers, and we know that
multiplication of complex numbers is associative.

3. Identity : Here, 1 is the identity elementand 1€ G.
4. Inverse: From the composition table, we see that the inverse elements of
1w, w? are 1, w2, w respectively.
Hence, G is a group w.r.t multiplication.

5. Commutativity: The corresponding rows and columns of the table are identical.
Therefore the binary operation . is commutative.

Hence, G is an abelian group w.r.t. multiplication.
Ex. Show that G={1, -1, i, —i }is an abelian group under multiplication.

Solution: The composition table of G is

1 -1 i
1 1 e
-1 -1 1 - i
[ [ -1 01
-i i i 1 -1

1. Closure property: Since all the entries of the composition table are the elements of

the given set, the set G is closed under multiplication.

2. Associativity: The elements of G are complex numbers, and we know that
multiplication of complex numbers is associative.

3. Identity : Here, 1 is the identity elementand 1€ G.
4. Inverse: From the composition table, we see that the inverse elements of
1-1,i,-i are 1,-1,-i,i respectively.

5. Commutativity: The corresponding rows and columns of the table are identical.
Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Modulo systems.

Addition modulom ( +m)

let mis a positive integer. For any two positive integers a and b



a+mb a+b if a+b<m

r if a+b3®m where risthe remainder obtained

a+nb
by dividing (a+b) with m.

Multiplication modulop ( *m)

let pis a positive integer. For any two positive integers aand b
a *mb = ab if ab<p
a *mb= r if ab3p where risthe remainder obtained
by dividing (ab) with p.

Ex. 3*4=2 , 5*4=0 , 2 *2=4

Example : The set G ={0,1,2,3,4,5} is a group with respect to addition modulo 6.
Solution: The composition table of G is
+4¢ 0 1 2 3 4 5

o o0 1 2 3 4 5

4 4 5 0 1 2 3
5 5 0 1 2 3 4

1. Closure property: Since all the entries of the composition table are the elements of the

given set, the set G is closed under +; .
2. Associativity: The binary operation +¢ is associative in G.
forex. (2+¢3)+s4 =5+;4=3 and
2+5(3+64) =2+1=3

3. Identity : Here, The first row of the table coincides with the top row. The element
heading that row, i.e., 0 is the identity element.

4. . Inverse: From the composition table, we see that the inverse elements of 0,1, 2,3, 4.5
are 0,5,4,3,2,1 respectively.



5. Commutativity: The corresponding rows and columns of the table are identical. Therefore
the binary operation +¢ is commutative.

Hence, (G, +¢ ) is an abelian group.

Example : The set G = {1,2,3,4,5,6} is a group with respect to multiplication
modulo 7.

Solution: The composition table of G is
21 2 3 4 5 6

1 1 2 3 4 5 6

5 5 3 1 6 4 2
6 6 5 4 3 2 1

1. Closure property: Since all the entries of the composition table are the elements of the
given set, the set G is closed under *; .

2. Associativity: The binary operation *; is associative in G.
forex. (2*;3)*,4 =6*;4=3 and
2*7(3*74)=2*75=3

3. Identity : Here, The first row of the table coincides with the top row. The element
heading that row, i.e., 1 is the identity element.

4. . Inverse: From the composition table, we see that the inverse elementsof 1,2,3,4.56
are 1,4,5,2,5,6 respectively.

5. Commutativity: The corresponding rows and columns of the table are identical. Therefore
the binary operation *; is commutative.

Hence, (G, *, ) is an abelian group.

More on finite groups

In a group with 2 elements, each element is its own inverse

In a group of even order there will be at least one element (other than identity element)
which is its own inverse

The set G={0,1,2,3,4,.....m-1} is a group with respect to addition modulo m.



The set G={1,2,3,4,....p-1} is a group with respect to multiplication
modulo p, where p is a prime number.

Order of an element of a group:

Let (G, *) be a group. Let ‘a’ be an element of G. The smallest integer n such thata"=eis
called order of ‘a’. If no such number exists then the order is infinite.

Ex.G={1,-1,i,-i }is a group w.r.t multiplication.The order —i is a)2 b) 3
c)4 d)1

Ex. Which of the following is not true.

a) The order of every element of a finite group is finite and is a divisor of the order of the
group.

b) The order of an element of a group is same as that of its inverse.
c) In the additive group of integers the order of every element except
O is infinite
d) In the infinite multiplicative group of nonzero rational numbers the
order of every element except 1 is infinite.
Ans. D

3.3 Sub groups

Def. A non empty sub set H of a group (G, *) is a sub group of G,
if (H, *)isagroup.
Note: For any group {G, *}, {e, * } and (G, * ) are trivial sub groups.
Ex. G={1,-1,i, -i }is a group w.r.t multiplication.
Hy= {1,-1}isasubgroup of G.
H,= {1} isa trivial subgroup of G.
Ex. (Z,+)and(Q, +) are sub groups of the group (R +).
Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff
i) a*beH "a,b€eH
ii) aleH "a€eH

Theorem



Theorem: A necessary and sufficient condition for a non empty subset H of a group (G, *) to
be a sub group is that

a€EH, beEH =>a*bleH.
Proof: Casel: Let (G, *) be a group and H is a subgroup of G
Leta,b EH =>b'€H (sinceH isis agroup)
=>a*bleH. ( By closure property in H)
Case2: Let H be a non empty set of a group (G, *).
let a*b'eH "abeH
Now, a*aleH (Taking b=a)
=>e €H i.e, identity existsin H.
Now,e €H, a€H =>e*aleH
= a' €EH
= Each element of H has inverse in H.
Further,a€H, bEH =>a€H, bleH
=a*(b") ' eH.
=a*b€H. ~Hisclosedw.rt *.
Finally, Let a,b,c EH
= a,b,c EG (sinceHIG)
=>(@a*b)*c=a*(b*c)
=~ *is associative in H
Hence, H is a subgroup of G.

Theorem: A necessary and sufficient condition for a non empty finite subset H of a group (G,
*) to be asub group is that

a*b €H foralla,b€eH
Proof: Assignment .

Example : Show that the intersection of two sub groups of a group G is again a sub group
of G.

Proof: Let (G, *) be a group.



Let H; and H, are two sub groups of G.

Let a,bEHNH,.

Now,a,b€H; =a* bt eH, ( Since, Hyis a subgroup of G)
again,a,b€H, =>a* bt €H, ( Since, H, is a subgroup of G)
~a*b'EHiNH,.

Hence, H; N H, is a subgroup of G .

Ex. Show that the union of two sub groups of a group G need not be
a sub group of G.

Proof: Let G be an additive group of integers.
Let Hy={0, £2, ¥4, 6, 8, .....}
and H,={0, 3, 6, £9, +12, .....}
Here, H1 and H; are groups w.r.t addition.
Further, H; and H, are subsets of G.
~ Hj; and H, are sub groups of G.
HiUH,={0, 2, 3, 4, 16, .....}
Here, H; U H, is not closed w.r.t addition.
Forex. 2,3 €G
But, 2+3=5 and 5 does not belongstoH; UH,.
Hence, H; U H, is not a sub group of G.
Homomorphism and Isomorphism.
Homomorphism : Consider the groups (G, *) and ( GLP)
A function f: G - G'is called a homomorphism if
f(a*b)=f(a) D f(b)

Isomorphism : If a homomorphism f: G = G is a bijection then f is called isomorphism
between G and G'.

Then we write G =G*



Example : Let R be a group of all real numbers under addition and R* be a group of all
positive real numbers under multiplication. Show that the mapping f:R > R" defined by
f(x) =2* forallx €R is an isomorphism.

Solution: First, let us show that fis a homomorphism.
Leta,b€ER .
Now, f(a+b) = 22"
=2 2°
= f(a).f(b)
~ fis an homomorphism.
Next, let us prove that f is a Bijection.
Foranya, b €R, Let, f(a)="f(b)
=>2° = 2°
=>a=>b
~ f is one.to-one.
Next, take any c € R".

log2
og. C=C.

Then log,c€R andf(log,c)=2
= Every element in R" has a pre image in R.
i.e., fis onto.

~ fis a bijection.

Hence, fis an isomorphism.

Ex. Let R be a group of all real numbers under addition and R* be a group of all positive real
numbers under multiplication. Show that the mapping f:R" > R defined by f(x) = logig x
for all x €R is anisomorphism.

Solution: First, let us show that f is a homomorphism.
Leta,b €R".
Now, f(a.b) =logio (a.b)

=logipa + logipb

= f(a) + f(b)

~ fis an homomorphism.



Next, let us prove that f is a Bijection.
Foranya,b €R", Let, f(a)="(b)

=>logipa = logigb

=>a=b
~ f is one.to-one.

Next, take any c € R.
Then 10°€R andf (10 =logio 10° =c.
= Every element in R has a pre image inR".
i.e., fis onto.
~ fis a bijection.
Hence, fis an isomorphism.

Theorem: Consider the groups ( G1, *) and ( G,, @ ) with identity elements e; and e,
respectively. If f : G; - G, is a group homomorphism, then prove that

a) fle1) = ez

b) f(a™) =[f(a)]™

c) If Hyisasub group of Gy and H, =f(H,),
then H, is a sub group of G,.

d) If f isanisomorphism from G; onto G,,

then fisan isomorphism from G, onto G;.

Proof: a) we have in G,

e, D f(e1) =f(ey) ( since, e, is identity in G,)
=f(ey*eq) ( since, ey is identity in Gq)
=f(e1) @ f(eq) ( since fis a homomorphism)

e, =f(eq) ( By right cancellation law )
b) For any a € G;, we have
fla) @ fla')=f(a*at)=fler) =e,

and f(@) @ f(a)=f(a'*a)=fle;) = e,



=~ f(a™) is the inverse of f(a)in G,
ie., [fa)l'=f(a?)
c) H, = f (Hy) is the image of H; under f; this is a subset of G,.
Let x,y € H,.
Then x=f(a), y="f(b) for some a,b €EH;
Since, Hjis a subgroup of G;, we have a * bt e H,.
Consequently,
x@ vy’ = fa) ® [f(b)]”
= f(a) @ f(b™)
= f(a*b™) €f(Hi) = H,
Hence, H, is a subgroup of G,.
d) Sincef : Gy = G, isanisomorphism, f is a bijection.
~ f1:G, > G; exists and is a bijection.
Let x,y€G, Then x@ y€EG,
and there exists a, b € G; such that x = f(a) and y = f(b).
7 x @ y)=f7(fla) © fib))
=f7(f (a*b))
=a*b

0% 7 ()

B This shows that f1: G, > Gyis an homomorphism as well.
~ fis an isomorphism.
3.3 Cosets
If Hisasub group of( G, *)and a € G then the set
Ha ={h * a| h € H}is called a right coset of H in G.
Similarly aH={a * h | h € H}is called a left coset of H is G.
Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.

2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union
of all right cosets of a sub group H is equal to G.



3) Lagrange’s theorem: The order of each sub group of a finite group is a divisor of

the order of the group.
4) The order of every element of a finite group is a divisor of the order of the group.
5) The converse of the lagrange’s theorem need not be true.

Ex. If G is a group of order p, where p is a prime number. Then the number of sub groups of G
is

a)1l b) 2 cp-1 d)p

Ans. b

Ex. Prove that every sub group of an abelian group is abelian.
Solution: Let (G, * ) be a group and H is a sub group of G.
Leta,b€H

=a,beG ( Since H is a subgroup of G)

=a*b=b*a (Since Gisan abelian group)

Hence, H is also abelian.

State and prove Lagrange’s Theorem

Lagrange’s theorem: The order of each sub group H of a finite

group G is a divisor of the order of the group.
Proof: Since G is finite group, H is finite.
Therefore, the number of cosets of H in G is finite.
Let Hay,Ha,, ...,Ha, be the distinct right cosets of H in G.
Then, G = Ha;UHa,U ..., UHa,
So that O(G) = O(Ha;)+0O(Hay) ...+ O(Ha,).
But, O(Ha;) = O(Ha,) = ..... = O(Ha,) = O(H)
~ O(G) = O(H)+O(H) ...+ O(H). (r terms)
=r.O(H)

This shows that O(H) divides O(G).



3.4 Lattices and Boolean algebra: Lattices and Partially Ordered sets, Boolean algebra.

Lattice and its Properties:

Introduction:

A lattice is a partially ordered set (L, £) in which every pair of elements a, b I L has a
greatest lower bound and a least upper bound.
The glb of a subset, {a, b} [ L will be denoted by a * b and the lub by a Ab.

Usually, for any pair a, b 1L, GLB {a, b} = a * b, is called the meet or product and
LUB{a, b} =a A b, is called the join or sum of a and b.

Examplel Consider a non-empty set S and let P(S) be its power set. The relation I
“contained in” is a partial ordering on P(S). For any two subsets A, Bi P(S)
GLB {A, B} and LUB {A, B} are evidently A C B and A EB respectively.

Example2 Let |+ be the set of positive integers, and D denote the relation of
“division” in |+ such that for any a, b T 1+, a D b iff a divides b. Then (I+, D) is a

lattice in which

the join of a and b is given by the least common multiple(LCM) of a and b, that is,
aAb=LCM of a and b, and the meet of a and b, that is , a * b is the greatest common divisor
(GCD) of a and b.
A lattice can be conveniently represented by a diagram.
For example, let Sn be the set of all divisors of n, where n is a positive integer. Let D denote the
relation “division” such that for any a, b I Sn, a D b iff a divides b.
Then (Sn, D) is a lattice with a * b = gcd(a, b) and a Ab= Icm(a, b).
Take n=6. Then S6 = {1, 2, 3, 6}. It can be represented by a diagram in
Fig(1). Take n=8. Then S8 = {1, 2, 4, 8}

Two lattices can have the same diagram. For example if S = {1, 2, 3} then (p(s), I ) and

(S6,D)

have the same diagram viz. fig(1), but the nodes are differently labeled .
We observe that for any partial ordering relation £ on a set S the

converse relation 3 is also partial ordering relation on S. If (S, £)is a lattice

With meet a * b and join a Ab , then (S, 3 ) is the also a lattice with meet
a A b and join a * b 1ie., the GLB and LUB getinterchanged . Thus we have
the principle of duality of lattice as follows.

Any statement about lattices involving the operations ” and V and the relations £ and 3
remains true if A, V, 3 and £ are replaced by V, #, £ and 3 respectively.
The operation * and V are called duals of each other as are the relations £ and 3..
Also, the lattice (L, £) and (L, 3) are called the duals of each other.
Properties of lattices:
Let (L, £) be a lattice with the binary operations * and A then for any a, b, c iL,



o a*a=a aAa=a (Idempotent)
. a*b=b*a , aAb =bAa (Commutative)
o (@a*b)*c=a*b*c), (aA)Ac:aA(bAc)

o (Associative)

o a*(aAb):a , az&(a*b):a (absorption)

For any allL,afa, af LUB{a,b}=>afa* (aAb). On the other
hand, GLB {a, a/okb} fai.e., (aAb) A a, hence a * (aAb) =a

Theorem 1
Let (L, £) be a lattice with the binary operations * and A denote the operations of meet and
join respectively For any a, b1 L,
afbéa*b=adaAb=b
Proof

Suppose that a £ b. we know thata £ a, a £ GLB {a, b},1e,afa*
b. But from the definition of a * b, we geta * b £ a.
Hence af£ b =>a* Db =3 wercrerrrenrrenncnnnnne (1)

Now we assume that a * b = a; but is possible only if a £ b,
thatisa*b=a=>a£b .ieiiiiiiiiiiiinnicinnnnens (2)

From (1) and (2), we geta£boda*b=a.

Suppose a * b = a.

thenbA @*b)=bAa=aAD eeeuerreeereenerennnnn 3)

butb A (a*b)=b (DY iV)eereerrrrreeerrreuneennnns (4)

Hence a A b =b, from 3)=>4)

Suppose aAb=b,ie., LUB {a, b} = b, this is possible only if a£ b, thus(3) => (1)
(1) =>(2) => (3) => (1). Hence these are equivalent.

Let us assume a * b = a.

Now(a*b)Ab:aAb

We know that by absorption law , (a * b) Ab=b

so thata A b =b, thereforea*b=abPaAb=b &)
similarly, we can provea Ab=bP a*b=a (6)
From (5) and (6), we get

a*b=alUaAb=b

Hence the theorem.

Theorem?2 For any a, b, ¢ I L, where (L, £) is a lattice. b
£fc=>{a*bfa*cand
{ aAbfaAc

Proof Supposeb £ c. we have proved thatb£ao6b *c=b........ @
Now consider
(@*b)*(a*c) =(a*a)*(b*c) (by Idempotent)

=a*(b*c)



=a*b (by (1))

Thus (a*b) * (a*c)=a*bwhich=>(a*b) £ (a*c)Similarly
(aAb)A(aAc):(aAa)A(bAc)
:aA(bAc)
—aAc
which=>(aAb)£@Ac)

note:These properties are known as isotonicity.
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