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Course Objectives 

 

 Understand the methods of discrete mathematics such as proofs, counting principles, number theory, 

logic and set theory.Understand the concepts of graph theory, binomial theorem, and generating function 

in analysis of various computer science applications.  

C       course Outcomes  Able to apply mathematical concepts and logical reasoning to solve problems in 

 Di     different fields of Computer science and information technology. 

Able to apply the concepts in courses like Computer Organization, DBMS, Analysis of Algorithms, 

Theoretical Computer Science, Cryptography, Artificial Intelligence  

UNIT I: 

Mathematical Logic: 

Introduction, Connectives, Normal Forms, The theory of Inference for the Statement Calculus,  

The Predicate Calculus, Inference Theory of Predicate Calculus. 

UNIT II:  

SET Theory: 

Basic concepts of Set Theory, Representation of Discrete structures, Relations and Ordering, Functions, 

Recursion. 

UNIT III:  

Algebraic Structures:  

Algebraic Systems: Examples and General Properties, Semi groups and Monoids, Polish expressions and 

their compilation, Groups: Definitions and Examples, Subgroups and Homomorphism s, Group Codes. 

Lattices and Boolean algebra:  

Lattices and Partially Ordered sets, Boolean algebra. 

UNIT IV: 

An Introduction to Graph Theory: 

Definitions and Examples, Sub graphs, complements, Graph Isomorphism, Vertex Degree: Euler Trails and 

Circuits, Planar Graphs, Hamilton Paths and Cycles, Graph Coloring and Chromatic Polynomials 

Trees: 

Definitions, Properties, Examples, Rooted Trees, Trees and Sorting, Weighted trees and Prefix Codes, 

Biconnected Components and Articulation Points 

UNIT V:  

Fundamental Principles of Counting:  

The rules of Sum and Product, Permutations, Combinations: The Binomial Theorem, Combinations with 

Repetition 

The Principle of Inclusion and Exclusion: 

The Principle of Inclusion and Exclusion, Generalizations of Principle, Derangements: Nothing is in Its Right 

Place, Rook Polynomials, Arrangements with Forbidden Positions 



Generating Functions: 

Introductory Examples, Definitions and Examples: Calculation Techniques, Partitions of Integers, The 

Exponential  Generating Functions, The Summation Operator. 
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UNIT II 

SET Theory: 

Basic concepts of Set Theory, Representation of Discrete structures, Relations and Ordering, 

Functions, Recursion. 

--------------------------------------------------------------------------------------------------------------------------------- 

2.0 INTRODUCTION 

2.1 BASIC CONCEPTS OF SET THEORY 

Set Definition: A collection of well defined objects is called as a set. The object comprising the set is 
called elements. We use capital letters to represent sets and small letters to represent elements. 

The following are the examples of sets. 

1. A battalion of Soldiers 

2. The rivers in India 

3. The vowels of alphabets 

Capital Letters are used to represent the sets where as small letters are used to represent the 
elements. 

If A is a set and a is a element belonging to the set a, we write it as a belongs to A i.e a Є A 

A functional Concept of set theory is the membership or belongs to a set is called members of the given 
set. A set is said to be well defined if it is possible to determine by means of certain rules, whether any 
given object is a member of the element. 

Representation of sets: 

 Sets can be represented in two ways 

1. All elements are listed, separated by commas and are enclosed by braces 

Example: 

   A={ 1,2,3,4,5,6}    ,  B={ a,b,c,d,e}, 

The repeated elements in sets are ignored. 

2.  second method it is defined by specifying a property that elements of the set have 
in common. 

 This can be represented as   A: { x|P(x)} 

Example: A={a,e,i,o,u} can be represented as  A:{x|x is a vowels} 

Finite set:  If a set contains finite number of elements is called as Finite set and it can be 
represented as   A: { 1,2,3 } 

Infinite Set:  If a set contains infinite number of elements is called as infinite set and it can be 
represented as   A: { , ,  , …. } 
Null Set: If a set contains no elements is called as Null set and it can be represented as    
null. 

 A=  {x|x is a multiple of 4, x is odd}   

Singleton : if a set contains single element is called singleton set  

Inclusion and Equality Sets 

SUB SET: 

 A set contain within a set is called Sub set. The contained set is called subset and 
containing is a set. 

It can be represented as  

 A  B, If x ∈ A and X ∈ B 

 If A is not a subset of B i.e if at least one element of A does not belongs to B then it can be 

written as   A ⊄  B. 

  i.e if a set contains n elements and the total number of subsets are 2n . 



 

SUPER SET 

 If a set A is a subset of B then it can be written as B is a super set of A and it can be 

represented as B  A  

 

PROPER SUBSET: 

 Any subset A is said to be  proper subset  of another set B is a subset of B, but there is at least 

one element of B which does not belongs to A i.e  if A  B  but A    B . It can be represented   as A ⊂  B. 

EQUALITY SET: 

 Two sets A & B are called as Equality sets if and only if all the elements of A are in Set B  and vice 
versa and can be represented as A=B. 

UNIVERSAL SET: 

 Is one it includes every set under discussion is called Universal set and represented by E 

2.2 RELATIONS and ORDERING 

Introduction 
The elements of a set may be related to one another. For example, in the set of natural 

numbers there is the less than  relation between the elements. The elements of one set may also be 

related to the elements another set. 

 

2.2.1 Binary Relation 
A binary relation between two sets A and B is a rule R which decides, for any elements, 

whether a is in relation R to b. If so, we write a R b. If a is not in relation R to b, then write as a /R b. 

We can also consider a R b as the ordered pair (a, b) in which case we can define a binary  relation 

from A to B as a subset of A X B. This subset is denoted by the relation R. 

Example: In general  any set of ordered pairs defines a binary relation. 
For example, the relation of father to his child is F = {(a, b) / a is the father of b} In this relation F, 

the first member is the name of the father and the second is the name of the child.The definition of 

relation permits any set of ordered pairs to define a relation. 

For example, the set S given by 

S = {(1, 2), (3, a), (b, a) ,(b, Joe)} 

Definition 

The domain D of a binary relation S is the set of all first elements of the ordered pairs in the 

relation. 

i.e  D(S)= {a / $ b for which a,  Є S} 

The range R of a binary relation S is the set of all second elements of the ordered 

pai s i  the elatio . i.e  R S  = {  / $ a fo  hi h a,  Є S} 

For example 

For the relation S = {(1, 2), (3, a), (b, a) ,(b, Joe)}  

D(S)  = {1, 3, b, b}   and 

  R(S)  = {2, a, a, Joe} 

Let X and Y be any two sets. A subset of the Cartesian product    X * Y defines a relation, say C. 

For any such relation C, we have D( C ) Í X and R( C) Í Y, and the relation C is said to from X to Y. 

 If Y = X, then C is said to be a relation form X to X. In such case, c is called a relation in X . Thus any 

relation in X is a subset of X * X . The set X * X is called a universal relation in X, while the empty set 

which is also a subset of X * X is called a void relation inX. 

 



For example 

Let L denote the relation less than or equal to  and D denote the relation divides  where x D 

y means   x divides y .  Both L and D are defined on the  set {1, 2, 3, 4} 

L = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4,4)}  

D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 

L Ç D = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4,4)} = D 
 

2.2.3 Properties of Binary Relations: 
Definition: A binary relation R in a set X is efle i e if, fo  e e   Є X,  R , That is  

,  Є R, or R is reflexive in X ó   Є X ®  R . 
For example 

1 The relation R is reflexive in the set of realnumbers. 

2 The set inclusion is reflexive in the family of all subsets of a universal set. 

3 The relation equality of set is also reflexive. 

4 The relation is parallel in the set lines in a plane. 

5 The relation of similarity in the set of triangles in a plane is reflexive. 
 
Definition: A relation R in a set X is symmetric if for every x and y in X, whenever x R y, then y R x.(i.e) 

 R is s et i  i  X ó    Є X ٨  Є X ٨ x R y ® y R x} 

For example 
 The relation equality of set issymmetric. 

 The relation of similarity in the set of triangles in a plane issymmetric. 

 The relation of being a sister is not symmetric in the set of allpeople. 

 However, in the set females it is symmetric. 
Definition:  A relation R in a set X is transitive if for every x and z in X, whenever x R y  and y R z , then  

x R z that is   R is  transitive in X ↔ y (x) (y)(z)  Є X ٨  Є X ٨ zЄ  X  ∧  x R y ∧  y R z  → x R z) 

For example 

 

 The relations   <, £, >, ³  and = are transitive in the set of real numbers 

 The relations   Í, Ì, Ê, É and equality are also transitive in the family ofsets. 

 The relation of similarity in the set of triangles in a plane is transitive. 

Definition: A relation R in a set X is irreflexive  if, fo  e e   Є X , , ÏX. 
For example 

 
 The relation  <is irreflexive in the set of all realnumbers. 

 The relation proper inclusion is irreflexive in the set of all nonempty subsets of a 

universalset. 

 LetX={1,2,3}andS={(1,1),(1,2),(3,2),(2,3),(3,3)}isneitherirreflexivenor reflexive. 

 
Definition:A  relation  R  in  a  set  x  is  anti  symmetricif  ,  for  every  x  and  y  in X, 

whenever x R y and y R x, then x = y. 

S oli all ,    Є X ٨  Є X ٨ x R y ٨ y R x ® x = y)    

 

For example 



 
 The relations £ , ³ and  = are antisymmetric 

 The relation Í is anti symmetricin set ofsubsets. 

 The relation divides  is anti symmetric in set of realnumbers. 

 Consider the relation is a son of  on the male children in a family.Evidently the 

relation is not symmetric, transitive andreflexive. 

 The relation  is a divisor of  is reflexive and transitive but not symmetric on the set of 

naturalnumbers. 

 Consider the set H of all human beings. Let r be a relation  is married to  

R is symmetric. 

 Let I be the set of integers. R on I is defined as a R b if a – b is an even number.Ris an 

reflexive, symmetric and transitive. 

2.2.4 Equivalence Relation 
Definition: A relation R in a set A is called an equivalence relation if 

 a R a for every i.e. R isreflexive 

 a R  =>  R a fo  e e  a,  Є A i.e. R iss et i  

 a R b and b R c => a R c for every a, ,  Є A, i.e. R istransitive. 
For example 

 The relation equality of numbers on set of realnumbers. 

 The relation being parallel on a set of lines in aplane. 
 

Problem1: Let  us consider the set  T of triangles in a plane.  Let  us  definea relation 

R in T as R= {(a, b) /  (a,  b Є  T and a  issimilar tob} 

We have to show that r elation R  Is an equivalence relation 

Solution  :             

 A triangle a is similar to itself. a Ra 

 If the triangle a is similar to the triangle b, then triangle b is similar to the triangle a then a 

R b => b Ra 

 If a is similar to b and b is similar to c, then a is similar to c (i.e) a R b and b R c => a R  c. 

 
  Hence R is an equivalence relation. 
 

P o le  : Let  = { , , , … } a d R = {(x, y) / x – y is divisible by 3} Show that R is an 

equivalence relation. 

 
Solutio : Fo  a  a Є X, a- a is divisible by 

3, Hence a R a, R is reflexive 

Fo  a  a,  Є X, if a – b is divisible by 3, then b – a is also divisible by 3, 

R is symmetric. 

Fo  a  a, ,  Є, if a R  a d  R , the  a – b is divisible by 3 and 

b–c is divisible by 3. So that (a – b) + (b – c) is also divisible by 3, 

hence a – c is also divisible by 3. Thus R is transitive. 

Hence R is equivalence. 



Problem3   Let Z be the set of all integers.  Let m be a fixed integer. Two integers a and 

b are said to be congruent modulo m if and only if m divides a-b, in which case   

we write a º(mod m). This relation is called the relation of congruence modulo m and we can 
show that is an equivalence relation. 

 
Solution   : 

 
 a - a=0 and m divides a – a (i.e) a R a, (a, a) Є R, R is reflexive. 

 a R b = m divides a-b 
 

m divides b - 

a b º a (mod 

m) b Ra 

that is R is symmetric. 

 
 a R b and b R c => a ºb (mod m) and bº c (modm) 

O m divides a – b and m dividesb-c 

O a – b = km and b –  = l  fo  so e k ,l Єz 

O (a – b) + (b – c) = km +lm 

O a – c = (k +l)m 

O aº c (mod m) 

O a Rc 

O R is transitive 
 

Hence the congruence relation is an equivalence relation. 
 

2.2.5 Equivalence Classes: 
 

Let R be an equivalence relation on a set A. For an  a ЄA, the e ui ale e lass generated by a is the 

set of all ele e ts  Є A su h a R  a d is de oted [a]. It is also called the R – equivalence class and 

de oted  a Є A. i.e., [a] = {  Є A /  R a} 

 
 

Let Z be the set of integer and R be the relation called congruence modulo 3  

defined by R = {(x, y)/ xÎ Z Ù yÎZ Ù (x-y) is divisible by 3} 

Then the equivalence classes are 

[ ] = {… -6, -3, 0, 3, 6, …} 
[ ] = {…, -5, - , , , , …} 

[ ] = {…, -4, - , , , , …} 

Composition of binary relations: 
Definition:Let R be a relation from X to Y and S be a relation from Y to Z. Then the relation R 

o S is given by R o S = {(x, z) / xÎX Ù z Î Z Ù y Î Y such that (x, y) Î R Ù (y, z) Î S)} is called the 

composite relation of R andS. 

The operation of obtaining R o S is called the composition of relations. 
 

Example: Let R = {(1, 2), (3, 4), (2, 2)} and 



S = {(4, 2), (2, 5), (3, 1),(1,3)} 

Then R o S = {(1, 5), (3, 2), (2, 5)} and S o R = {(4, 2), (3, 2), (1, 4)} 

It is to e oted that R o S ≠ S o R. 
Also Ro(S o T) = (R o S) o T = R o S o T 

 
Note: We write R o R as R2; R o R o R as R3 and so on. 

 
Definition 

Let R be a relation from X to Y, a relation R from Y to X is called the converse of R, where 

the o de ed pai s of Ř a e o tai ed  i te ha gi g the u e s i  ea h of the o de ed pairs of 

R. This means for x Î X and y Î Y, that  R  ó  Ř . 
The  the elatio  Ř is gi e   R = { ,  / ,  Î R} is alled the o e se 

of R Example: 

Let R = {(1, 2),(3, 4),(2, 2)} 

The  Ř = { , , , , , } 
 

Note:   If R is an equivalence relatio , the  Ř is also a  e ui ale e elatio . 
 

Definition Let  X  be  any  finite  set  and  R  be  a  relation  in  X.   The relation 

R+ = R U R  U R …i  X. is alled the transitive closure of R in X 

 
Example: Let R = {(a, b), (b, c), (c, a)}. 

Now R2 = R o R = {(a, c), (b, a), (c, b)} 

R3 = R2 o R = {(a, a), (b, b), (c, c)} 

R4 = R3 o R = {(a, b), (b, c), (c, a)} = R 

R5= R3o R2 = R2 and so on. 

 
Thus, R+ = R U R  U R  U R  U… 

= R U R2 U R3. 

={(a, b),(b, c),(c, a),(a, c),(b, a),(c ,b),(a, b),(b, b),(c, c)} 
 

We see that R+ is a transitive relation containing R. In fact, it is the smallest transitive relation 

containing R. 



Partial Ordering Relations: 
Definition 

A binary relation R in a set P is called partial order relation or partial ordering 

in P iff R is reflexive, anti symmetric, and transitive. 

A partial order relation is denoted by the symbol £., If £ is a partial ordering on P, 

then the ordered pair (P, £) is called a partially ordered set or a poset. 

 

 Let R be the set of real numbers. The relation less than or equal to or 

O ,is a partial ordering onR. 

 Let X bea set and r(X) be its power set. The relation subset, Í on X is partialordering. 

 Let Sn be the set of divisors of n. The relation D means divides  on Sn,ispartial 

ordering on Sn. 

 
In a Partially ordered set(P, £) ,  an  element  y Î P is Said to cover an element xÎ P 

if x <y And ifthere doesnot exist any element z Î P such that  x £ z andz £ y; 

that is, y  coversx Û  (x < yÙ (x £  z  £ y Þ X = z  Ú z = y))   

  A partial order relation £ on a set P can be represented by means of a diagram known as 

aHasse diagram or partial order set diagram of (P, £). In such a diagram, each element is 

represented by a small circle or a dot. The circle for x Î P is drawn below the circle for y Î P if   x 

<y, and a line is drawn between x and y if y covers x. 
 

If x < y but y does not cover x, then x and y are not connected directly by a single line.However, 

they are connected through one or more elements of P. 

 
Hasse Diagram: 

 
A Hasse diagram is a digraph for a poset which does not have loops and arcs implied by the 

transitivity. 

Example 10: For the relation {< a, a >, < a, b >, < a, c >, < b, b >, < b, c >, < c, c >} on set {a, b,c}, 

the Hasse diagram has the arcs {< a, b >, < b, c >} as shown below. 

 

 

 

 
 

Ex: Let A be a given finite set and r(A) its power set. Let Í be the subset relation on the elements of 



r(A). Draw Hasse diagram of (r(A), Í) for A = {a, b, c} 

 
 

 



3. Functions 
3.1 Introduction 

A function is a special type of relation. It may be considered as a relation in which each element of 

the domain belongs to only one ordered pair in the relation. Thus a function from A  to B is a subset of A 

X B ha i g the p ope t  that fo  ea h a ЄA, the e is o e a d o l  o e   Є B such that (a, b) ÎG. 

 
Definition 

Let A and B be any two sets. A relation f from A to B is called a function if fo  e e  a Є A the e is a 
u i ue  Є B su h that a,  Є f . 

 
Note that the definition of function requires that a relation must satisfy two additional conditions 

in order to qualify as a function. 

 
The fi st o ditio  is that e e  a Є A ust e elated to so e  Є B, i.e  the domain of f must be 

A and not merely subset of A. The second requirement of uniqueness can be expressed as a,  Є f ٨ 

,  Є f =>  =  

Intuitively, a function from a set A to a set B is a rule which assigns to every element of A, a unique 

element of B. If a ЄA, the  the u i ue ele e t of B assig ed to a u de  f is de oted  f (a).The usual 

notation for a function f from A to B is f: A® B defined by a ® f a  he e a Є A, f(a) is called the image 

of a under f and a is called pre image of f(a). 

 
 Let X = Y = R and f(x) = x2 + 2. Df = R and Rf ÍR. 

 Let X be the set of all statements in logic and let Y = {True,  False}. A 

mapping f: X®Y is afunction. 

 A program written in high level language is mapped into a machine language by a compiler. 

Similarly, the output from a compiler is a function of itsinput. 

 Let X = Y = R and f(x) = x2 is a function from X ® Y,and g(x2) = x is not a function from X ®Y. 

 
A mapping f: A ® B is called one-to-one (injective or 1 –1) if distinct elements of A are 

mapped into distinct elements of B. (i.e) f is one-to-one if 

a1 = a2 => f (a1) = f(a2) or equivalently f(a1) ¹ f(a2) => a1 ¹ a2 

For example, f: N ® N given by f(x) = x is 1-1 where N is the set of a natural numbers. 

A mapping f: A® B is called o to su je ti e  if fo  e e   Є B the e is a  a Є A su h that f (a) 

= B. i.e. if every element of B has a pre-image in A. Otherwise it is called into. 



For example, f: Z®Z given by f(x) = x + 1 is an onto mapping. A 

mapping is both 1-1 and onto is called bijective 

. 

For example f: R®R given by f(x) = X + 1 is bijective. 
 

Definition: A mapping f: R® b is called a constant mapping if, for all aÎA, f (a) = b, a fixed 

element. 

For example f: Z®Z given by f(x) = 0, for all x ÎZ is a constant mapping. 
 

Definition 

A mapping f: A®A is called the identity mapping of A if f (a) = a, for all aÎA. Usually it is denoted by 

IA or simply I. 

 

3.2 Composition of functions: 
 

If f: A®B and g: B®C are two functions, then the composition of functions f and g, denoted by g o f, 

is the function is given by g o f : A®C and is given by 

g o f = { a,  / a Є A ٨  Є C ٨ $bÎ B ': f(a)= b ٨ g(b) = c} and (g 

of)(a) = ((f(a)) 

 
Example 1: Consider the sets A = {1, 2, 3},B={a, b} and C = {x, y}. Let f: A® 

B be defined by f (1) = a ; f(2) = b and f(3)=b and Let g: B® C be defined 

by g(a) = x and g(b) = y 

(i.e) f = {(1, a), (2, b), (3, b)} and g = {(a, x), (b, y)}. Then g 

o f: A®C is defined by 

(g of) (1) = g (f(1)) = g(a) =    x 

(g o f) (2) = g (f(2)) = g(b) = y 

(g o f) (3) = g (f(3)) = g(b) = y 

i.e., g o f = {(1, x), (2, y),(3, y)} 
 

If f: A® A and g: A®A, where A= {1, 2, 3}, are given by 

f = {(1, 2), (2, 3), (3, 1)} and g = {(1, 3), (2, 2), (3, 1)} Then 

g of = {(1, 2), (2, 1), (3, 3)}, fog= {(1, 1), (2, 3), (3, 2)} 

f of = {(1, 3), (2, 1), (3, 2)} and gog= {(1, 1), (2, 2), (3, 3)} 

 
Example 2: Let f(x) = x+2, g(x) = x – 2 and h(x) = 3x for x Î R, where R is the set of real numbers. 

Then f o f = {(x, x+4)/xÎ R} f o g = 

{(x, x)/ x Î X} g 

o f = {(x, x)/ xÎ X} 

g o g = {(x, x-4)/x Î X} 



h o g = {(x,3x-6)/ x Î X} h o f 

= {(x, 3x+6)/ x Î X} 

 

3.3 Inverse functions: 

Let f: A® B be a one-to-one and onto mapping. Then, its inverse, denoted by f -1 is given by f - 1 = {(b, 

a) / (a, b) Î f} Clearly f-1: B® A is one-to-one and onto. 

 
Also we observe that f o f -1 = IB and f -1o f = IA. 

If f -1 exists then f is called invertible.   

 

For example:Let f: R ®R be defined by f(x) = x + 2 Then f -1: 

R® R is defined by f -1(x) = x - 2 

Theorem: Let f: X ®Y and g: Y ® Z be two one to one and onto functions. Then gof is also one to one and 

onto function. 

 

Proof 

Let f:X ® Y g : Y ® Z be two one to one and onto functions. Let x1, x2 Î X 
 

 g o f (x1) = g of(x2), 

 g (f(x1)) =g(f(x2)), 

 g(x1)  = g(x2) since [f is1-1] 
 

x1 = x2 since [ g is 1-1} 

so that gof is 1-1. 
 

By the definition of composition, gof : X ® Z is a function. 

We have to prove that every element of z Î Z an image element for some x Î X 
 

undergof.  

Since g is onto $ y ÎY ': g(y) = z   and   f is onto from X to Y, 

$ x ÎX ': f(x) = y. 

Now, gof (x) = g ( f ( x)) 

= g(y) [since f(x) = y] 

= z  [since g(y) = z] 

which shows that gof is onto. 



Theorem (g o f) -1 = f -1 o g-1 

(i.e) the inverse of a composite function can be expressed in terms of the composition of 

the inverses in the reverse order. 

 

Proof.  
f: A ® B is one to one and onto. g: B 

® C is one to one and onto. 

gof: A ® C is also one to one and onto. Þ 

(gof) -1: C ® A is one to one and onto. 

Let a Î A, then there exists an element b Î b such that f (a) = b Þ a = f-1(b). Now b 

Î B Þ there exists an element c Î C such that g (b) = c Þ b = g - 1(c). Then (gof)(a) = 

g[f(a)] = g(b) = c Þ a = (gof) -1(c).…….  

(f -1 o g-1) (c) = f -1(g -1 (c)) = f -1(b) = a Þ a = (f -1 o g -1)( c ) 

….  Combining (1) and (2), we have (gof) -

1 = f -1 o g -1 



 

Theorem: If f: A ® B is an invertible mapping , then f o f -

1 = I B and f-1 o f = IA 

Proof: f is invertible, then f -1 is defined by f(a) = b ó f-1(b) = a 

where a Î A and bÎ B . 

Now we have to prove that f of -1 = IB 

. Let bÎ B and f -1(b) = a, a Î A 

then fof-1(b) = f(f-1(b)) 

= f(a) = b 

therefore f o f -1 (b) = b " b Î B => f o f -1 = IB Now 

f -1 o f(a) = f -1 (f(a)) = f -1 (b) = a therefore f -1 o 

f(a) = a " a Î A => f -1 o f = IA. Hence the theorem. 

 

3.4 Recursive Functions: 
 

The term "recursive function" is often used informally to describe any function that is defined 

with recursion. There are several formal counterparts to this informal definition, many of which only 

differ in trivial respects. 

 
Kleene (1952) defines a "partial recursive function" of nonnegative integers to be any function 

that isdefinedbyanoncontradictorysystemofequationswhoseleftandrightsidesarecomposedfrom 

(1) function symbols (for example, , , , etc.), (2) variables for nonnegative integers (forexample, , 

, , etc.), (3) the constant 0, and (4) the successor function . 

For example, 

       (1) 
 

     (2) 
 

     (3) 
 

(4) 
 
 

Defines       to be the function   that computes the product of and . 
 

Note that the equations might not uniquely determine the value of for every possible 

input, and in that sense the definition is "partial." If the system of equations determines the value 

of f for every input, then the definition is said to be "total." When the term "recursive function" is 

used alone, it is usually implicit that "total recursive function" is intended. Note that some authors 

use the term "general recursive function to mean partial recursive function, although others use it 

to mean "total recursivefunction." 

 
The set of functions that can be defined recursively in this manner is known to be equivalent to 

the set of functions computed by Turing machines and by the lambda calculus. 
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