
Lecture 10Lecture 10
Sorting

Bringing Order to the World



Lecture Outline

 Iterative sorting algorithms (comparison based)

 Selection Sort

 Bubble Sort Bubble Sort

 Insertion Sort

 Recursive sorting algorithms (comparison based)

 Merge Sort

 Quick Sort

 Radix sort (non-comparison based)

 Properties of Sorting

 In-place sort, stable sort

 Comparison of sorting algorithms

 Note: we only consider sorting data in ascending order
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Why Study Sorting?

 When an input is sorted, many problems become 
easy (e.g. searching, min, max, k-th smallest)

 Sorting has a variety of interesting algorithmic 
solutions that embody many ideas

 Comparison vs non-comparison based

 Iterative

Recursive Recursive

 Divide-and-conquer

 Best/worst/average-case bounds

 Randomized algorithms
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Applications of Sorting

 Uniqueness testing

 Deleting duplicates

 Prioritizing events

 Frequency counting

 Reconstructing the original order

 Set intersection/union

 Finding a target pair x, y such that x+y = z

 Efficient searching
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Selection SortSelection Sort



Selection Sort: Idea

 Given an array of n items

1. Find the largest item x, in the range of [0…n−1]

2. Swap x with the (n−1)th item 

3. Reduce n by 1 and go to Step 1
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Selection Sort: Illustration

29 10 14 37 13
37 is the largest, swap it with 
the last element, i.e. 13.  
Q: How to find the largest?

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37
x

x

x Unsorted items

Largest item for 
current iteration

Sorted items
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13 10 14 29 37

10 13 14 29 37 Sorted!

We can also find the smallest and put it the front instead
http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection



Selection Sort: Implementation
void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Step 1: 
Search for for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

Search for 
maximum 
element

Step 2:  
Swap 
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} Swap 
maximum 
element 

with the last 
item i



void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Selection Sort: Analysis

 n−1

 n−1

Number of times 
executed

for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

 n−1

 (n−1)+(n−2)+…+1

= n(n−1)/2

 n−1

Total }
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• c1 and c2 are cost of statements in 
outer and inner blocks

Total 

= c1(n−1) + 

c2*n*(n−1)/2

= O(n2)



Bubble SortBubble Sort



Bubble Sort: Idea

 Given an array of n items

1. Compare pair of adjacent items

2. Swap if the items are out of order

3. Repeat until the end of array 

 The largest item will be at the last position

4. Reduce n by 1 and go to Step 1

 Analogy

 Large item is like “bubble” that floats to the end of the 
array
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Bubble Sort: Illustration

At the end of Pass 2, the second 
largest item 29 is at the second 

[ CS1020E AY1617S1 Lecture 10 ]

12

At the end of Pass 1, the largest 
item 37 is at the last position.

largest item 29 is at the second 
last position.

x

x

Sorted Item

Pair of items 
under comparison



Bubble Sort: Implementation

void bubbleSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

for (int j = 1; j <= i; j++) {
Step 1: 

Compare for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j])

swap(a[j], a[j-1]);

}

}

}
Step 2: 

Swap if the 
items are out 

Compare 
adjacent 
pairs of 

numbers
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29 10 14 37 13

items are out 
of order

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble



Bubble Sort: Analysis

 1 iteration of the inner loop (test and swap) requires 
time bounded by a constant c

 Two nested loops Two nested loops

 Outer loop: exactly n iterations

 Inner loop:

 when i=0, (n−1) iterations

 when i=1, (n−2) iterations

 … …

 when i=(n−1), 0 iterations

 Total number of iterations = 0+1+…+(n−1) = n(n−1)/2

 Total time = c n(n−1)/2 = O(n2)
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Bubble Sort: Early Termination

 Bubble Sort is inefficient with a O(n2) time 
complexity

However, it has an interesting property However, it has an interesting property

 Given the following array, how many times will the 
inner loop swap a pair of item?

Idea

3 6 11 25 39

 Idea

 If we go through the inner loop with no swapping 
 the array is sorted 
 can stop early!
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Bubble Sort v2.0: Implementation
void bubbleSort2(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

bool is_sorted = true;

for (int j = 1; j <= i; j++) {

Assume the array 
is sorted before 
the inner loop

for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j]) {

swap(a[j], a[j-1]);

is_sorted = false;

}

} // end of inner loop

if (is_sorted) return;

the inner loop

Any swapping will 
invalidate the 
assumption

If the flag 
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if (is_sorted) return;

} 

}

If the flag 
remains true 
after the inner 
loop  sorted!



Bubble Sort v2.0: Analysis

 Worst-case 

 Input is in descending order

 Running time remains the same: O(n2) Running time remains the same: O(n2)

 Best-case

 Input is already in ascending order

 The algorithm returns after a single outer iteration 

 Running time: O(n)
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Insertion SortInsertion Sort



Insertion Sort: Idea

 Similar to how most people arrange a hand of 
poker cards

 Start with one card in your hand Start with one card in your hand

 Pick the next card and insert it into its proper sorted 
order

 Repeat previous step for all cards

10♠1st card:  10♠
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K♠

5♠10♠

5♠ 10♠

2nd card:  5♠

3rd card:  K♠

…     …      …      …



Insertion Sort: Illustration

40 13 20 8Start
x Sorted

x

x Unsorted

Unsorted
To be inserted

13 40 20 8Iteration 1

13 20 40 8Iteration 2
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8 13 20 40Iteration 3

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion



Insertion Sort: Implementation

void insertionSort(int a[], int n) {
for (int i = 1; i < n; i++) {

int next = a[i];

next is the 
item to be 
inserted

int next = a[i];
int j;

for (j = i-1; j >= 0 && a[j] > next; j--)
a[j+1] = a[j];

a[j+1] = next;
} 

inserted

Shift sorted 
items to make 
place for next
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} 
}

29 10 14 37 13

Insert next to 
the correct 

location

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion



Insertion Sort: Analysis

 Outer-loop executes (n−1) times

 Number of times inner-loop is executed depends on 
the inputthe input

 Best-case: the array is already sorted and 
(a[j] > next) is always false

 No shifting of data is necessary

 Worst-case: the array is reversely sorted and 
(a[j] > next) is always true

Insertion always occur at the front Insertion always occur at the front

 Therefore, the best-case time is O(n)

 And the worst-case time is O(n2)
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Merge SortMerge Sort



Merge Sort: Idea

 Suppose we only know how to merge two sorted 
sets of elements into one  

 Merge {1, 5, 9} with {2, 11}  {1, 2, 5, 9, 11} Merge {1, 5, 9} with {2, 11}  {1, 2, 5, 9, 11}

 Question

 Where do we get the two sorted sets in the first place?

 Idea (use merge to sort n items)

 Merge each pair of elements into sets of 2 

 Merge each pair of sets of 2 into sets of 4

 Repeat previous step for sets of 4 …

 Final step: merge 2 sets of n/2 elements to obtain a 
fully sorted set
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Divide-and-Conquer Method

 A powerful problem solving technique

 Divide-and-conquer method solves problem in 
the following stepsthe following steps

 Divide step

 Divide the large problem into smaller problems

 Recursively solve the smaller problems

 Conquer step

 Combine the results of the smaller problems to produce  Combine the results of the smaller problems to produce 
the result of the larger problem
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Divide and Conquer: Merge Sort

 Merge Sort is a divide-and-conquer sorting 
algorithm

Divide step  Divide step 

 Divide the array into two (equal) halves

 Recursively sort the two halves

 Conquer step

 Merge the two halves to form a sorted array
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Merge Sort: Illustration

7 2 6 3 8 4 5

7 2 6 3 8 4 5Divide into 
7 2 6 3 8 4 5

2 3 6 7 4 5 8

Divide into 
two halves

Recursively 
sort the 
halves

2 3 4 5 6 7 8Merge them
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2 3 4 5 6 7 8Merge them

 Question

 How should we sort the halves in the 2nd step?



Merge Sort: Implementation
void mergeSort(int a[], int low, int high) {
if (low < high) {
int mid = (low+high) / 2;

mergeSort(a, low  , mid );

Merge sort on
a[low...high]

Divide a[ ] into two mergeSort(a, low  , mid );
mergeSort(a, mid+1, high);

merge(a, low, mid, high);
}

} Conquer: merge the 
two sorted halvesFunction to merge

a[low…mid] and 

Divide a[ ] into two 
halves and recursively

sort them

[ CS1020E AY1617S1 Lecture 10 ]

28

a[low…mid] and 
a[mid+1…high] into 

a[low…high]

 Note

 mergeSort() is a recursive function

 low >= high is the base case, i.e. there is 0 or 1 item



Merge Sort: Example
mergeSort(a[low…mid])

mergeSort(a[mid+1…high])

merge(a[low..mid],

a[mid+1..high])

38 16 27 39 12 27

38 16 27 39 12 27 a[mid+1..high])

38 16

38 16

16 38

27 39 12

39 12

12 39 

27
Divide Phase

Recursive call to 
mergeSort()

Conquer Phase
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16 27 38 12 27 39 

12 16 27 27 38 39

Conquer Phase
Merge steps

http://visualgo.net/sorting?create=38,16,27,39,12,27&mode=Merge



Merge Sort: Merge

3 7 8

a[3..5]a[0..2] b[0..5]

2 4 5

3 7 8

3 7 8

3 7 8

3 7 8

2 4 5

2 4 5

2 4 5

2 4 5

2

2 3

2 3 4

2 3 4 5
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3 7 8

3 7 8

2 4 5

2 4 5

2 3 4 5

2 3 4 5 7 8 x

x

x
Unmerged 

items

Items used for 
comparison

Merged items
Two sorted halves to be 

merged

Merged result in a 
temporary array



Merge Sort: Merge Implementation

void merge(int a[], int low, int mid, int high) {

int n = high-low+1; b is a 

temporary 

PS: C++ STL <algorithm> has merge subroutine too

int* b = new int[n];

int left=low, right=mid+1, bIdx=0;

while (left <= mid && right <= high) {

if (a[left] <= a[right])

b[bIdx++] = a[left++];

else

Normal Merging
Where both 

temporary 
array to store 

result
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else

b[bIdx++] = a[right++];

} 

// continue on next slide

Where both 
halves have 

unmerged items



Merge Sort: Merge Implementation
// continued from previous slide

while (left <= mid) b[bIdx++] = a[left++];

while (right <= high) b[bIdx++] = a[right++];

for (int k = 0; k < n; k++) 

a[low+k] = b[k];

delete [] b;

}

Merged result 
are copied 

back into a[]

Remaining 
items are 

copied into
b[]
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}
Remember to free 
allocated memory

 Question
 Why do we need a temporary array b[]?



Merge Sort: Analysis

 In mergeSort(), the bulk of work is done in the 

merge step

 For merge(a, low, mid, high) For merge(a, low, mid, high)

 Let total items = k = (high − low + 1)

 Number of comparisons ≤ k − 1

 Number of moves from original array to temporary array = k

 Number of moves from temporary array back to original 
array = k

 In total, number of operations ≤ 3k − 1 = O(k)

 The important question is

 How many times is merge() called?
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Merge Sort: Analysis
Level 0:
mergeSort n items

Level 1:
mergeSort n/2 items

n

n/2 n/2

Level 0:
1 call to mergeSort

Level 1:
2 calls to mergeSortmergeSort n/2 items

Level 2:
mergeSort n/22 items

Level (lg n): 
mergeSort 1 item

n/2 n/2

n/22n/22 n/22 n/22

…

1 1 1. . . 1

2 calls to mergeSort

Level 2:
22 calls to mergeSort

Level (lg n): 
2lg n(= n) calls to 

……
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mergeSort 1 item 1 1 1. . . 1 2lg n(= n) calls to 
mergeSort

n/(2k) = 1   n = 2k  k = lg n



Merge Sort: Analysis

 Level 0: 0 call to merge()

 Level 1: 1 calls to merge() with n/2 items in each half,

O(1 x 2 x n/2) = O(n) timeO(1 x 2 x n/2) = O(n) time

 Level 2: 2 calls to merge() with n/22 items in each half, 

O(2 x 2 x n/22) = O(n) time

 Level 3: 22 calls to merge() with n/23 items in each half, 

O(22 x 2 x n/23) = O(n) time

 …

 Level (lg n): 2lg(n) − 1(= n/2) calls to merge() with n/2lg(n) (= 1)

item in each half, O(n) time

 Total time complexity = O(n lg(n))

 Optimal comparison-based sorting method
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Merge Sort: Pros and Cons

 Pros

 The performance is guaranteed, i.e. unaffected by 
original ordering of the inputoriginal ordering of the input

 Suitable for extremely large number of inputs

 Can operate on the input portion by portion

 Cons

 Not easy to implement Not easy to implement

 Requires additional storage during merging operation

 O(n) extra memory storage needed 
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Quick SortQuick Sort



Quick Sort: Idea

 Quick Sort is a divide-and-conquer algorithm

 Divide step

 Choose an item p (known as pivot) and partition the  Choose an item p (known as pivot) and partition the 
items of a[i...j] into two parts

 Items that are smaller than p

 Items that are greater than or equal to p

 Recursively sort the two parts

 Conquer step

Do nothing! Do nothing!

 In comparison, Merge Sort spends most of the time 
in conquer step but very little time in divide step

[ CS1020E AY1617S1 Lecture 10 ]

38



Quick Sort: Divide Step Example

1927 38 12 39 27 16

Pivot
Choose first 

element as pivot

3812 39 2716 27

Pivot

27 3912 27 3816

Pivot

Partition a[] about 
the pivot 27

Recursively sort 
the two parts
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27 3912 27 3816the two parts

Notice anything special about the 
position of pivot in the final 

sorted items?



Quick Sort: Implementation

void quickSort(int a[], int low, int high) {

if (low < high) {

int pivotIdx = partition(a, low, high); 
Partition 

a[low...high]
and return the 

quickSort(a, low, pivotIdx-1); 

quickSort(a, pivotIdx+1, high);

}

}

and return the 
index of the 
pivot item

Recursively sort 
the two portions 
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 partition() splits a[low...high] into two portions

 a[low ... pivot–1] and a[pivot+1 ... high]

 Pivot item does not participate in any further sorting



Quick Sort: Partition Algorithm

 To partition a[i...j], we choose a[i] as the pivot p

 Why choose a[i]? Are there other choices?

 The remaining items (i.e. a[i+1...j]) are divided into 3  The remaining items (i.e. a[i+1...j]) are divided into 3 
regions

 S1 = a[i+1...m] where items < p

 S2 = a[m+1...k-1] where item ≥ p

 Unknown (unprocessed) = a[k...j], where items are yet to be 
assigned to S1 or S2
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? p< pp

i m k j

S1 S2 Unknown



Quick Sort: Partition Algorithm

 Initially, regions S1 and S2 are empty

 All items excluding p are in the unknown region

For each item a[k] in the unknown region For each item a[k] in the unknown region

 Compare a[k] with p

 If a[k] >= p, put it into S2

 Otherwise, put a[k] into S1

?p
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?p

i k j

Unknown



Quick Sort: Partition Algorithm

 Case 1: if a[k] >= p

S1 S2

If a[k]=y  p,

Increment k

? p< pp
i m k j

x y

S1 S2

? p< pp x y

S1 S2
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Increment k ? p< pp
i m k j

x y



Quick Sort: Partition Algorithm

 Case 2: if a[k] < p

If a[k]=y < p ? p< pp x y

S1 S2

If a[k]=y < p

? p< pp
i m k j

x yIncrement m

? p< pp y x

? p< pp
i m k j

x y
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? p< pp
i m k j

y xSwap x and y

? p< pp
i m k j

y xIncrement k



Quick Sort: Partition Implementation

int partition(int a[], int i, int j) {
int p = a[i];
int m = i;

p is the pivot

S1 and S2 empty 

PS: C++ STL <algorithm> has partition subroutine too

int m = i;

for (int k = i+1; k <= j; k++) {
if (a[k] < p) {
m++;
swap(a[k], a[m]);

}
else {

S1 and S2 empty 
initially

Go through each 
element in unknown 

region

Case 1: Do nothing!

Case 2 
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}
}
swap(a[i], a[m]);
return m;

}

Case 1: Do nothing!

Swap pivot with a[m]

m is the index of pivot



Quick Sort: Partition Example
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http://visualgo.net/sorting?create=27,38,12,39,27,16&mode=Quick



Quick Sort: Partition Analysis

 There is only a single for-loop

 Number of iterations = number of items, n, in the 
unknown regionunknown region

 n = high − low

 Complexity is O(n)

 Similar to Merge Sort, the complexity is then 
dependent on the number of times partition() is dependent on the number of times partition() is 
called
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Quick Sort: Worst Case Analysis

 When the array is already in ascending order

195 18 23 39 44 57

What is the pivot index returned by partition()?

195 18 23 39 44 57

S1 = a[i+1...m]
empty when m = i

S2 = a[m+1...j]
p = a[i]

 What is the pivot index returned by partition()?

 What is the effect of swap(a, i, m)?

 S1 is empty, while S2 contains every item except 
the pivot
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Quick Sort: Worst Case Analysis

n

1 n-1

Total no. 
of levels 
= n

1 n-1

1 n-2

1 1

…
…

As each partition takes 
linear time, the 
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1 1 linear time, the 
algorithm in its worst 
case has n levels and 
hence it takes time 
n+(n-1)+...+1 = O(n2)

contains the pivot only!



Quick Sort: Best/Average Case Analysis

 Best case occurs when partition always splits the 
array into two equal halves

 Depth of recursion is log n Depth of recursion is log n

 Each level takes n or fewer comparisons, so the time 
complexity is O(n log n)

 In practice, worst case is rare, and on the 
average we get some good splits and some bad 
ones (details in CS3230 :O)ones (details in CS3230 :O)

 Average time is also O(n log n)
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Lower Bound: Comparison-Based Sort

 It is known that

 All comparison-based sorting algorithms have a 
complexity lower bound of n log ncomplexity lower bound of n log n

 Therefore, any comparison-based sorting 
algorithm with worst-case complexity
O(n log n) is optimal
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