
Lecture 10Lecture 10
Sorting

Bringing Order to the World

Lecture Outline

 Iterative sorting algorithms (comparison based)

 Selection Sort

 Bubble Sort Bubble Sort

 Insertion Sort

 Recursive sorting algorithms (comparison based)

 Merge Sort

 Quick Sort

 Radix sort (non-comparison based)

 Properties of Sorting

 In-place sort, stable sort

 Comparison of sorting algorithms

 Note: we only consider sorting data in ascending order

[CS1020E AY1617S1 Lecture 10]

2

Why Study Sorting?

 When an input is sorted, many problems become
easy (e.g. searching, min, max, k-th smallest)

 Sorting has a variety of interesting algorithmic
solutions that embody many ideas

 Comparison vs non-comparison based

 Iterative

Recursive Recursive

 Divide-and-conquer

 Best/worst/average-case bounds

 Randomized algorithms

[CS1020E AY1617S1 Lecture 10]

3

Applications of Sorting

 Uniqueness testing

 Deleting duplicates

 Prioritizing events

 Frequency counting

 Reconstructing the original order

 Set intersection/union

 Finding a target pair x, y such that x+y = z

 Efficient searching

[CS1020E AY1617S1 Lecture 10]

4

Selection SortSelection Sort

Selection Sort: Idea

 Given an array of n items

1. Find the largest item x, in the range of [0…n−1]

2. Swap x with the (n−1)th item

3. Reduce n by 1 and go to Step 1

[CS1020E AY1617S1 Lecture 10]

6

Selection Sort: Illustration

29 10 14 37 13
37 is the largest, swap it with
the last element, i.e. 13.
Q: How to find the largest?

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37
x

x

x Unsorted items

Largest item for
current iteration

Sorted items

[CS1020E AY1617S1 Lecture 10]

7

13 10 14 29 37

10 13 14 29 37 Sorted!

We can also find the smallest and put it the front instead
http://visualgo.net/sorting?create=29,10,14,37,13&mode=Selection

Selection Sort: Implementation
void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Step 1:
Search for for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

Search for
maximum
element

Step 2:
Swap

[CS1020E AY1617S1 Lecture 10]

8

} Swap
maximum
element

with the last
item i

void selectionSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

int maxIdx = i;

for (int j = 0; j < i; j++)

Selection Sort: Analysis

 n−1

 n−1

Number of times
executed

for (int j = 0; j < i; j++)

if (a[j] >= a[maxIdx])

maxIdx = j;

// swap routine is in STL <algorithm>

swap(a[i], a[maxIdx]);

}

}

 n−1

 (n−1)+(n−2)+…+1

= n(n−1)/2

 n−1

Total }

[CS1020E AY1617S1 Lecture 10]

9

• c1 and c2 are cost of statements in
outer and inner blocks

Total

= c1(n−1) +

c2*n*(n−1)/2

= O(n2)

Bubble SortBubble Sort

Bubble Sort: Idea

 Given an array of n items

1. Compare pair of adjacent items

2. Swap if the items are out of order

3. Repeat until the end of array

 The largest item will be at the last position

4. Reduce n by 1 and go to Step 1

 Analogy

 Large item is like “bubble” that floats to the end of the
array

[CS1020E AY1617S1 Lecture 10]

11

Bubble Sort: Illustration

At the end of Pass 2, the second
largest item 29 is at the second

[CS1020E AY1617S1 Lecture 10]

12

At the end of Pass 1, the largest
item 37 is at the last position.

largest item 29 is at the second
last position.

x

x

Sorted Item

Pair of items
under comparison

Bubble Sort: Implementation

void bubbleSort(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

for (int j = 1; j <= i; j++) {
Step 1:

Compare for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j])

swap(a[j], a[j-1]);

}

}

}
Step 2:

Swap if the
items are out

Compare
adjacent
pairs of

numbers

[CS1020E AY1617S1 Lecture 10]

13

29 10 14 37 13

items are out
of order

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Bubble

Bubble Sort: Analysis

 1 iteration of the inner loop (test and swap) requires
time bounded by a constant c

 Two nested loops Two nested loops

 Outer loop: exactly n iterations

 Inner loop:

 when i=0, (n−1) iterations

 when i=1, (n−2) iterations

 … …

 when i=(n−1), 0 iterations

 Total number of iterations = 0+1+…+(n−1) = n(n−1)/2

 Total time = c n(n−1)/2 = O(n2)

[CS1020E AY1617S1 Lecture 10]

14

Bubble Sort: Early Termination

 Bubble Sort is inefficient with a O(n2) time
complexity

However, it has an interesting property However, it has an interesting property

 Given the following array, how many times will the
inner loop swap a pair of item?

Idea

3 6 11 25 39

 Idea

 If we go through the inner loop with no swapping
 the array is sorted
 can stop early!

[CS1020E AY1617S1 Lecture 10]

15

Bubble Sort v2.0: Implementation
void bubbleSort2(int a[], int n) {

for (int i = n-1; i >= 1; i--) {

bool is_sorted = true;

for (int j = 1; j <= i; j++) {

Assume the array
is sorted before
the inner loop

for (int j = 1; j <= i; j++) {

if (a[j-1] > a[j]) {

swap(a[j], a[j-1]);

is_sorted = false;

}

} // end of inner loop

if (is_sorted) return;

the inner loop

Any swapping will
invalidate the
assumption

If the flag

[CS1020E AY1617S1 Lecture 10]

16

if (is_sorted) return;

}

}

If the flag
remains true
after the inner
loop sorted!

Bubble Sort v2.0: Analysis

 Worst-case

 Input is in descending order

 Running time remains the same: O(n2) Running time remains the same: O(n2)

 Best-case

 Input is already in ascending order

 The algorithm returns after a single outer iteration

 Running time: O(n)

[CS1020E AY1617S1 Lecture 10]

17

Insertion SortInsertion Sort

Insertion Sort: Idea

 Similar to how most people arrange a hand of
poker cards

 Start with one card in your hand Start with one card in your hand

 Pick the next card and insert it into its proper sorted
order

 Repeat previous step for all cards

10♠1st card: 10♠

[CS1020E AY1617S1 Lecture 10]

19

K♠

5♠10♠

5♠ 10♠

2nd card: 5♠

3rd card: K♠

… … … …

Insertion Sort: Illustration

40 13 20 8Start
x Sorted

x

x Unsorted

Unsorted
To be inserted

13 40 20 8Iteration 1

13 20 40 8Iteration 2

[CS1020E AY1617S1 Lecture 10]

20

8 13 20 40Iteration 3

http://visualgo.net/sorting?create=40,13,20,8&mode=Insertion

Insertion Sort: Implementation

void insertionSort(int a[], int n) {
for (int i = 1; i < n; i++) {

int next = a[i];

next is the
item to be
inserted

int next = a[i];
int j;

for (j = i-1; j >= 0 && a[j] > next; j--)
a[j+1] = a[j];

a[j+1] = next;
}

inserted

Shift sorted
items to make
place for next

[CS1020E AY1617S1 Lecture 10]

21

}
}

29 10 14 37 13

Insert next to
the correct

location

http://visualgo.net/sorting?create=29,10,14,37,13&mode=Insertion

Insertion Sort: Analysis

 Outer-loop executes (n−1) times

 Number of times inner-loop is executed depends on
the inputthe input

 Best-case: the array is already sorted and
(a[j] > next) is always false

 No shifting of data is necessary

 Worst-case: the array is reversely sorted and
(a[j] > next) is always true

Insertion always occur at the front Insertion always occur at the front

 Therefore, the best-case time is O(n)

 And the worst-case time is O(n2)

[CS1020E AY1617S1 Lecture 10]

22

Merge SortMerge Sort

Merge Sort: Idea

 Suppose we only know how to merge two sorted
sets of elements into one

 Merge {1, 5, 9} with {2, 11} {1, 2, 5, 9, 11} Merge {1, 5, 9} with {2, 11} {1, 2, 5, 9, 11}

 Question

 Where do we get the two sorted sets in the first place?

 Idea (use merge to sort n items)

 Merge each pair of elements into sets of 2

 Merge each pair of sets of 2 into sets of 4

 Repeat previous step for sets of 4 …

 Final step: merge 2 sets of n/2 elements to obtain a
fully sorted set

[CS1020E AY1617S1 Lecture 10]

24

Divide-and-Conquer Method

 A powerful problem solving technique

 Divide-and-conquer method solves problem in
the following stepsthe following steps

 Divide step

 Divide the large problem into smaller problems

 Recursively solve the smaller problems

 Conquer step

 Combine the results of the smaller problems to produce Combine the results of the smaller problems to produce
the result of the larger problem

[CS1020E AY1617S1 Lecture 10]

25

Divide and Conquer: Merge Sort

 Merge Sort is a divide-and-conquer sorting
algorithm

Divide step Divide step

 Divide the array into two (equal) halves

 Recursively sort the two halves

 Conquer step

 Merge the two halves to form a sorted array

[CS1020E AY1617S1 Lecture 10]

26

Merge Sort: Illustration

7 2 6 3 8 4 5

7 2 6 3 8 4 5Divide into
7 2 6 3 8 4 5

2 3 6 7 4 5 8

Divide into
two halves

Recursively
sort the
halves

2 3 4 5 6 7 8Merge them

[CS1020E AY1617S1 Lecture 10]

27

2 3 4 5 6 7 8Merge them

 Question

 How should we sort the halves in the 2nd step?

Merge Sort: Implementation
void mergeSort(int a[], int low, int high) {
if (low < high) {
int mid = (low+high) / 2;

mergeSort(a, low , mid);

Merge sort on
a[low...high]

Divide a[] into two mergeSort(a, low , mid);
mergeSort(a, mid+1, high);

merge(a, low, mid, high);
}

} Conquer: merge the
two sorted halvesFunction to merge

a[low…mid] and

Divide a[] into two
halves and recursively

sort them

[CS1020E AY1617S1 Lecture 10]

28

a[low…mid] and
a[mid+1…high] into

a[low…high]

 Note

 mergeSort() is a recursive function

 low >= high is the base case, i.e. there is 0 or 1 item

Merge Sort: Example
mergeSort(a[low…mid])

mergeSort(a[mid+1…high])

merge(a[low..mid],

a[mid+1..high])

38 16 27 39 12 27

38 16 27 39 12 27 a[mid+1..high])

38 16

38 16

16 38

27 39 12

39 12

12 39

27
Divide Phase

Recursive call to
mergeSort()

Conquer Phase

[CS1020E AY1617S1 Lecture 10]

29

16 27 38 12 27 39

12 16 27 27 38 39

Conquer Phase
Merge steps

http://visualgo.net/sorting?create=38,16,27,39,12,27&mode=Merge

Merge Sort: Merge

3 7 8

a[3..5]a[0..2] b[0..5]

2 4 5

3 7 8

3 7 8

3 7 8

3 7 8

2 4 5

2 4 5

2 4 5

2 4 5

2

2 3

2 3 4

2 3 4 5

[CS1020E AY1617S1 Lecture 10]

30

3 7 8

3 7 8

2 4 5

2 4 5

2 3 4 5

2 3 4 5 7 8 x

x

x
Unmerged

items

Items used for
comparison

Merged items
Two sorted halves to be

merged

Merged result in a
temporary array

Merge Sort: Merge Implementation

void merge(int a[], int low, int mid, int high) {

int n = high-low+1; b is a

temporary

PS: C++ STL <algorithm> has merge subroutine too

int* b = new int[n];

int left=low, right=mid+1, bIdx=0;

while (left <= mid && right <= high) {

if (a[left] <= a[right])

b[bIdx++] = a[left++];

else

Normal Merging
Where both

temporary
array to store

result

[CS1020E AY1617S1 Lecture 10]

31

else

b[bIdx++] = a[right++];

}

// continue on next slide

Where both
halves have

unmerged items

Merge Sort: Merge Implementation
// continued from previous slide

while (left <= mid) b[bIdx++] = a[left++];

while (right <= high) b[bIdx++] = a[right++];

for (int k = 0; k < n; k++)

a[low+k] = b[k];

delete [] b;

}

Merged result
are copied

back into a[]

Remaining
items are

copied into
b[]

[CS1020E AY1617S1 Lecture 10]

32

}
Remember to free
allocated memory

 Question
 Why do we need a temporary array b[]?

Merge Sort: Analysis

 In mergeSort(), the bulk of work is done in the

merge step

 For merge(a, low, mid, high) For merge(a, low, mid, high)

 Let total items = k = (high − low + 1)

 Number of comparisons ≤ k − 1

 Number of moves from original array to temporary array = k

 Number of moves from temporary array back to original
array = k

 In total, number of operations ≤ 3k − 1 = O(k)

 The important question is

 How many times is merge() called?

[CS1020E AY1617S1 Lecture 10]

33

Merge Sort: Analysis
Level 0:
mergeSort n items

Level 1:
mergeSort n/2 items

n

n/2 n/2

Level 0:
1 call to mergeSort

Level 1:
2 calls to mergeSortmergeSort n/2 items

Level 2:
mergeSort n/22 items

Level (lg n):
mergeSort 1 item

n/2 n/2

n/22n/22 n/22 n/22

…

1 1 1. . . 1

2 calls to mergeSort

Level 2:
22 calls to mergeSort

Level (lg n):
2lg n(= n) calls to

……

[CS1020E AY1617S1 Lecture 10]

34

mergeSort 1 item 1 1 1. . . 1 2lg n(= n) calls to
mergeSort

n/(2k) = 1 n = 2k k = lg n

Merge Sort: Analysis

 Level 0: 0 call to merge()

 Level 1: 1 calls to merge() with n/2 items in each half,

O(1 x 2 x n/2) = O(n) timeO(1 x 2 x n/2) = O(n) time

 Level 2: 2 calls to merge() with n/22 items in each half,

O(2 x 2 x n/22) = O(n) time

 Level 3: 22 calls to merge() with n/23 items in each half,

O(22 x 2 x n/23) = O(n) time

 …

 Level (lg n): 2lg(n) − 1(= n/2) calls to merge() with n/2lg(n) (= 1)

item in each half, O(n) time

 Total time complexity = O(n lg(n))

 Optimal comparison-based sorting method

[CS1020E AY1617S1 Lecture 10]

35

Merge Sort: Pros and Cons

 Pros

 The performance is guaranteed, i.e. unaffected by
original ordering of the inputoriginal ordering of the input

 Suitable for extremely large number of inputs

 Can operate on the input portion by portion

 Cons

 Not easy to implement Not easy to implement

 Requires additional storage during merging operation

 O(n) extra memory storage needed

[CS1020E AY1617S1 Lecture 10]

36

Quick SortQuick Sort

Quick Sort: Idea

 Quick Sort is a divide-and-conquer algorithm

 Divide step

 Choose an item p (known as pivot) and partition the Choose an item p (known as pivot) and partition the
items of a[i...j] into two parts

 Items that are smaller than p

 Items that are greater than or equal to p

 Recursively sort the two parts

 Conquer step

Do nothing! Do nothing!

 In comparison, Merge Sort spends most of the time
in conquer step but very little time in divide step

[CS1020E AY1617S1 Lecture 10]

38

Quick Sort: Divide Step Example

1927 38 12 39 27 16

Pivot
Choose first

element as pivot

3812 39 2716 27

Pivot

27 3912 27 3816

Pivot

Partition a[] about
the pivot 27

Recursively sort
the two parts

[CS1020E AY1617S1 Lecture 10]

39

27 3912 27 3816the two parts

Notice anything special about the
position of pivot in the final

sorted items?

Quick Sort: Implementation

void quickSort(int a[], int low, int high) {

if (low < high) {

int pivotIdx = partition(a, low, high);
Partition

a[low...high]
and return the

quickSort(a, low, pivotIdx-1);

quickSort(a, pivotIdx+1, high);

}

}

and return the
index of the
pivot item

Recursively sort
the two portions

[CS1020E AY1617S1 Lecture 10]

40

 partition() splits a[low...high] into two portions

 a[low ... pivot–1] and a[pivot+1 ... high]

 Pivot item does not participate in any further sorting

Quick Sort: Partition Algorithm

 To partition a[i...j], we choose a[i] as the pivot p

 Why choose a[i]? Are there other choices?

 The remaining items (i.e. a[i+1...j]) are divided into 3 The remaining items (i.e. a[i+1...j]) are divided into 3
regions

 S1 = a[i+1...m] where items < p

 S2 = a[m+1...k-1] where item ≥ p

 Unknown (unprocessed) = a[k...j], where items are yet to be
assigned to S1 or S2

[CS1020E AY1617S1 Lecture 10]

41

? p< pp

i m k j

S1 S2 Unknown

Quick Sort: Partition Algorithm

 Initially, regions S1 and S2 are empty

 All items excluding p are in the unknown region

For each item a[k] in the unknown region For each item a[k] in the unknown region

 Compare a[k] with p

 If a[k] >= p, put it into S2

 Otherwise, put a[k] into S1

?p

[CS1020E AY1617S1 Lecture 10]

42

?p

i k j

Unknown

Quick Sort: Partition Algorithm

 Case 1: if a[k] >= p

S1 S2

If a[k]=y p,

Increment k

? p< pp
i m k j

x y

S1 S2

? p< pp x y

S1 S2

[CS1020E AY1617S1 Lecture 10]

43

Increment k ? p< pp
i m k j

x y

Quick Sort: Partition Algorithm

 Case 2: if a[k] < p

If a[k]=y < p ? p< pp x y

S1 S2

If a[k]=y < p

? p< pp
i m k j

x yIncrement m

? p< pp y x

? p< pp
i m k j

x y

[CS1020E AY1617S1 Lecture 10] 44

? p< pp
i m k j

y xSwap x and y

? p< pp
i m k j

y xIncrement k

Quick Sort: Partition Implementation

int partition(int a[], int i, int j) {
int p = a[i];
int m = i;

p is the pivot

S1 and S2 empty

PS: C++ STL <algorithm> has partition subroutine too

int m = i;

for (int k = i+1; k <= j; k++) {
if (a[k] < p) {
m++;
swap(a[k], a[m]);

}
else {

S1 and S2 empty
initially

Go through each
element in unknown

region

Case 1: Do nothing!

Case 2

[CS1020E AY1617S1 Lecture 10]

45

}
}
swap(a[i], a[m]);
return m;

}

Case 1: Do nothing!

Swap pivot with a[m]

m is the index of pivot

Quick Sort: Partition Example

[CS1020E AY1617S1 Lecture 10]

46

http://visualgo.net/sorting?create=27,38,12,39,27,16&mode=Quick

Quick Sort: Partition Analysis

 There is only a single for-loop

 Number of iterations = number of items, n, in the
unknown regionunknown region

 n = high − low

 Complexity is O(n)

 Similar to Merge Sort, the complexity is then
dependent on the number of times partition() is dependent on the number of times partition() is
called

[CS1020E AY1617S1 Lecture 10]

47

Quick Sort: Worst Case Analysis

 When the array is already in ascending order

195 18 23 39 44 57

What is the pivot index returned by partition()?

195 18 23 39 44 57

S1 = a[i+1...m]
empty when m = i

S2 = a[m+1...j]
p = a[i]

 What is the pivot index returned by partition()?

 What is the effect of swap(a, i, m)?

 S1 is empty, while S2 contains every item except
the pivot

[CS1020E AY1617S1 Lecture 10]

48

Quick Sort: Worst Case Analysis

n

1 n-1

Total no.
of levels
= n

1 n-1

1 n-2

1 1

…
…

As each partition takes
linear time, the

[CS1020E AY1617S1 Lecture 10]

49

1 1 linear time, the
algorithm in its worst
case has n levels and
hence it takes time
n+(n-1)+...+1 = O(n2)

contains the pivot only!

Quick Sort: Best/Average Case Analysis

 Best case occurs when partition always splits the
array into two equal halves

 Depth of recursion is log n Depth of recursion is log n

 Each level takes n or fewer comparisons, so the time
complexity is O(n log n)

 In practice, worst case is rare, and on the
average we get some good splits and some bad
ones (details in CS3230 :O)ones (details in CS3230 :O)

 Average time is also O(n log n)

[CS1020E AY1617S1 Lecture 10]

50

Lower Bound: Comparison-Based Sort

 It is known that

 All comparison-based sorting algorithms have a
complexity lower bound of n log ncomplexity lower bound of n log n

 Therefore, any comparison-based sorting
algorithm with worst-case complexity
O(n log n) is optimal

[CS1020E AY1617S1 Lecture 10]

51

