G.PULLAIAH COLLEGE OF ENGINEERING&TECHNOLOGY::KURNOOL MATHEMATICS-II QUESTION BANK

UNIT-II

I .EULER-CAUCHY'S LINEAR EQUATION :

- 1. Solve $(x^2D^2 + xD + 1)y = \log x \sin(\log x)$
- 2. Solve $(x^3D^3 + 3x^2D^2 + xD + 1)y = x + \log x$
- 3. Solve $2x^2D^2 + 3xD y = x$
- 4. Solve $(x^2D^2 3xD + 5)y = x^2 \sin(\log x)$
- 5. Solve $(x^2D^2 + 3xD + 1)y = \log x$
- 6. Solve $(x^2D^2+xD+9)y = 0$
- 7. Solve $(x^2D^2 xD + 1)y = 0$
- 8. Solve $(x^2D^2-3xD+4)y = 0$

II.LEGENDRE'S LINEAR EQUATION :

- 1. Solve $(1+2x)^2 \frac{d^2y}{dx^2} 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$
- 2. Solve $((1+x)^2D^2 + (1+x)D + 1)y = 4\cos[\log(1+x)]$
- 3. Solve $((3x + 2)^2 D^2 + 3(3x + 2)D 36)y = 3x^2 + 4x$
- 4. Solve $((x + 1)^2 D^2 3(x + 1)D + 4)y = x^2 + x + 1$

III.ELECTRICAL CIRCUITS

- 1. A condenser of capacity C discharged through an inductance L and resistance R in series and the charge q at time t satisfies the equation $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = 0$. Given that L=0.25 henries, R=250 ohms, C=2x10⁻⁶ farads, and that when t=0, charge q is 0.002 coulombs and the current $\frac{dq}{dt} = 0$, obtain the value of q in terms of t.
- 2. An uncharged condenser of capacity C is charged by applying an emf E.sin $\left(\frac{1}{\sqrt{LC}}\right)$, through leads of self inductance L and negligible resistance. Prove that at any time *t*, the charge on one of the plates is $\frac{EC}{2} \left\{ \sin \frac{t}{LC} \frac{1}{\sqrt{LC}} \cos \frac{t}{\sqrt{LC}} \right\}$
- 3 .The charge q(t) on the capacitor is given by D.E., $10\frac{d^2q}{dt^2} + 120\frac{dq}{dt} + 1000q = 17 \sin 2t$. At time zero and the charge on the capacitor is $\frac{1}{2000}$ coulomb. Find the charge on the capacitor for t > 0.

IV.Simultaneous Linear Equations

1. Solve $\frac{dx}{dt} = x - 2y$, $\frac{dy}{dt} = 5x + 3y$ 2. Solve $\frac{dx}{dt} = 3x + 2y$, $\frac{dy}{dt} + 5x + 3y = 0$ 3. Solve $\frac{dx}{dt} = y$, $\frac{dy}{dt} = x$ 4. Solve $\frac{dx}{dt} = -ay$, $\frac{dy}{dt} = ax$ 5. Solve $\frac{dx}{dt} + 5x - 2y = t$, $\frac{dy}{dt} + 2x + y = 0$ 6. Solve $D^2x + y = \text{sint}$; $x + D^2y = \cos t$ 7. Solve $\frac{dx}{dt} + y = e^t$; $\frac{dy}{dt} - x = e^{-t}$ 8. Solve (D + 6)y - Dx = 0; (3 - D)x - 2Dy = 0