Specially Prepared for Engineering Students

Learning =" ((

JAVA

x ¥k =

~ -+InaMa: ical Way

H. ﬁlteeq _ﬁlﬁmed; M.Tech.,

Assistant Professor of CSE,
Kurnool.

As per INTUA R09 CSE Syllabus

ACKNOWLEDGEMENT

First I thank Almighty God for giving me the Rnowledge to learn and teach

various students.

It’s my privilege to thanks my parents as without their right guidance and

support, these book will be a dream for me.

Finally, I thank my colleagues and friends for helping me during tough
period of time.

e N

TInterest & Focus are two XEYWORDS of a petrfect programmer”

“The goal of this book is to find the next JAVA Programmer in

You in a magical way...”

\)

H. Ateeq Ahmed, w.Tech,
Mobile no: 9948378994,

E-mail ID: ateegh25@qgmail.com.

mailto:ateeqh25@gmail.com

CONTENTS

Topics Page No.

1. Java Basics

History of java, Java Buzzwords, Data types,
variables, scope and life time of variables,
arrays, operators, expressions, control
statements, type conversions and casting,
simple java program, classes and objects, 1-37
concepts of classes, objects, constructors,
methods, introducing access control, this
keyword, garbage collection, overloading
methods and constructors, parameter passing,
recursion, string handling.

2. Inheritance

Hierarchical abstractions, base class object,
subclass, subtype, substitutability, forms of
inheritance, specialization, specification,
construction, extension, limitation, 38 -52
combination, benefits of inheritance, costs of
inheritance, members access rules, super uses,
using final with inheritance, polymorphism —
method overriding, abstract classes.

3. Packages and Interfaces

Defining, creating and accessing a package,
Understanding CLASSPATH, importing
packages, differences between classes and
interfaces, defining an interface, implementing
interface, applying interfaces, variables in
interface and extending interfaces, Exploring
packages — java.io, java.util.

53 -64

4. Exception Handling and Multithreading

Concepts of Exception handling, benefits of
exception handling, Termination or resumptive
models, exception hierarchy, usage of try,
catch, throw, throws and finally, java built in 65 - 81
exceptions, creating own exception subclass,
differences between multithreading and
multitasking, thread life cycle, creating threads,
synchronizing threads.

Learning JAVA in a Magical Way

UNIT-1I

History of Java (Genesis of Java):

Creation of Java:

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first
working version. This language was initially called “Oak” but was renamed “Java”

in 1995.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead,
the primary motivation was the need for a platform-independent (that is, architecture-
neutral) language that could be used to create software to be embedded in various
consumer electronic devices, such as microwave ovens and remote controls. As you
can probably guess, many different types of CPUs are used as controllers. The trouble
with C and C++ (and most other languages) is that they are designed to be compiled
for a specific target. Although it is possible to compile a C++ program for just about
any type of CP'U, to do so requires a full C++ compiler targeted for that CPU. The
problem is that compilers are expensive and hme-consuming to create, An easier—
and more cost-efficient—solution was needed. In an attempt to find such a solution,
Gosling and others began work on a portable, platform-independent language that
could be used to produce code that would run on a variety of CPUs under differing
environments. This effort ulimately led to the creation of Java.

As mentioned earlier, Java derives much of its character from C and C++. This is
by intent. The Java designers knew that using the familiar syntax of C and echoing
the object-oriented features of C++ would make their language appealing to the
legions of experienced C/C++ programmers. In addition to the surface similarities,
Java shares some of the other attributes that helped make C and C++ successful. First,
Java was designed, tested, and refined by real, working programmers. It is a language
grounded in the needs and experiences of the people who devised it. Thus, Java is also
a programmer’s language. Second, Java is cohesive and logically consistent. Third,
except for those constraints imposed by the Internet environment, Java gives you, the
programmer, full control. If you program well, your programs reflect it. If you program
poorly, your programs reflect that, too. Put differently, Java is not a language with
training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java
has significant practical and philosophical differences. While it is true that Java was
influenced by C++, it 1s not an enhanced version of C++. For example, Java is neither
upwardly nor downwardly compatible with C++. Of course, the similarities with C++
are significant, and if you are a C++ programmer, then you will feel right at home with
Java. One other point: Java was not designed to replace C++. Java was designed to
solve a certain set of problems. C++ was designed to solve a different set of problems.
Both will coexist for many years to come.

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 2

Java Applets and Applications

Java can be used to create two types of programs: applications and applets. An
application 1s a program that runs on your computer, under the operating system of that
computer. That is, an application created by Java is more or less like one created using C
or C++. When used to create applications, Java is not much different from any other
computer language. Rather, itis Java’s ability to create applets that makes it important.
Anapplet is an application designed to be transmitted over the Internet and executed by
a Java-compatible Web browser. An applet is actually a tiny Java program, dynamically
downloaded across the network, just like an image, sound file, or video clip. The
mmportant difference is that an applet is an intelligent program, not just an animation or
media file. In other words, an applet is a program that can react to user input and
dynamically change—not just run the same animation or sound over and over.

Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just
described 1s that the output of a Java compiler is not executable code. Rather, it is
bytecode. Bytecode 1s a highly optimized set of instructions designed to be executed
by the Java run-time system, which is called the Java Virtual Machine (JVM). That 1s,
in its standard form, the JVM is an interpreter for bytecode. This may come as a bit of
a surprise. As you know, C++ is compiled to executable code. In fact, most modern
languages are designed to be compiled, not interpreted—mostly because of
performance concerns. However, the fact that a Java program is executed by the
JVM helps solve the major problems associated with downloading programs over
the Internet. Here is why.

Translating a Java program into bytecode helps makes it much easier to run a
program in a wide variety of environments. The reason is straightforward: only the
JVM needs to be implemented for each platform. Once the run-time package exists
for a given system, any Java program can run on it. Remember, although the details
of the [VM will differ from platform to platform, all interpret the same Java bytecode.
If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is,
of course, not a feasible solution. Thus, the interpretation of bytecode is the easiest way
to create truly portable programs.

The fact that a Java program is interpreted also helps to make it secure. Because the
execution of every Java program is under the control of the JVM, the JVM can contain
the program and prevent it from generating side effects outside of the system. As you
will see, safety is also enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs substantially slower than it would
run if compiled to executable code. However, with Java, the differential between the
two 1s not so great. The use of bytecode enables the Java run-time system to execute
programs much faster than you might expect.

Although Java was designed for interpretation, there is technically nothing about
Java that prevents on-the-fly compilation of bytecode into native code. Along these
lines, 5un supplies its Just [n Time (JIT) compiler for bytecode, which 1s included in
the Java 2 release. When the JIT compiler is part of the JVM, it compiles bytecode into
executable code in real time, on a piece-by-piece, demand basis.

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

The Java Buzzwords

No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability
and security, other factors also played an important role in molding the final form of
the language. The key considerations were summed up by the Java team in the
following list of buzzwords:

Simple

Secure

Portable
Object-oriented
Robust
Multithreaded
Architecture-neutral
Interpreted

High performance

Mhstributed

Dynamic

Let us Examine each of them briefly.

Simple
Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find
Java hard to master. It you already understand the basic concepts of object-oriented
programming, learning Java will be even easier. Best of all, if yvou are an experienced
C++ programmer, moving to Java will require very little effort. Because Java inherits
the C/C++ syntax and many of the object-oriented features of C++, most programmers
have little trouble learning Java. Also, some of the more confusing concepts from C++
are either left out of Java or implemented in a cleaner, more approachable manner.

Security

As vou are likely aware, every time that vou download a “normal” program, you
are risking a viral infection. Prior to Java, most users did not download executable
programs frequently, and those who did scanned them for viruses prior to execution.
Even so, most users still worried about the possibility of infecting their systems with
a virus. In addition to viruses, another type of malicious program exists that must be
guarded against. This type of program can gather private information, such as credit
card numbers, bank account balances, and passwords, by searching the contents of
vour computer’s local file system. Java answers both of these concerns by providing
a “firewall” between a networked application and your computer.

When you use a Java-compatible Web browser, you can safely download Java
applets without fear of viral infection or malicious intent. Java achieves this protection
by confining a Java program to the Java execution environment and not allowing it

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 4
access to other parts of the computer. (You will see how this is accomplished shortly.)
The ability to download applets with confidence that no harm will be done and that
no security will be breached is considered by many to be the single most important
aspect of Java.

Portability

As discussed earlier, many types of computers and operating systems are in use
throughout the world—and many are connected to the Internet. For programs to

be dynamically downloaded to all the various types of platforms connected to the
Internet, some means of generating portable executable code 1s needed. As you will
soon see, the same mechanism that helps ensure security also helps create portability.
Indeed, Java's solution to these two problems is both elegant and efficient.

Object-Oriented

Although influenced by its predecessors, Java was not designed to be source-code
compatible with any other language. This allowed the Java team the freedom to design
with a blank slate. One outcome of this was a clean, usable, pragmatic approach to
objects. Borrowing liberally from many seminal object-software environments of the
last few decades, Java manages to strike a balance between the purist’s “everything is
an object” paradigm and the pragmatist’s “stay out of my way” model. The object
model in Java is simple and easy to extend, while simple types, such as integers, are
kept as high-performance nonobjects.

Robust

The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To
gain reliability, Java restricts you in a few key areas, to force you to find your mistakes
early in program development. At the same time, Java frees you from having to worry

about many of the most common causes of programming errors. Because Javaisa
strictly typed language, it checks your code at compile ime. However, it also checks
yvour code at run time. In fact, many hard-to-track-down bugs that often turn up in
hard-to-reproduce run-time situations are simply impossible to create in Java.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive,
networked programs. To accomplish this, Java supports multithreaded programming,
which allows you to write programs that do many things simultaneously. The Java
run-time system comes with an elegant yet sophisticated solution for multiprocess
synchronization that enables you to construct smoothly running interactive systems.

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 5
Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One
of the main problems facing programmers is that no guarantee exists that if you write
a program today, it will run tomorrow—even on the same machine. Operating system
upgrades, processor upgrades, and changes in core system resources can all combine
to make a program malfunction. The Java designers made several hard decisions in the
Java language and the Java Virtual Machine in an attempt to alter this situation. Their
goal was “write once; run anywhere, any time, forever.” To a great extent, this goal
was accomplished.

Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by compiling
into an intermediate representation called Java bytecode. This code can be interpreted
on any system that provides a Java Virtual Machine. Most previous attempts at cross-
platform solutions have done so at the expense of performance.

Distributed

Java is designed for the distributed environment of the Internet, because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different
from accessing a file. The original version of Java (Qak) included features for intra-
address-space messaging. This allowed objects on two different computers to execute
procedures remotely. Java revived these interfaces in a package called Remote Method
Invocation (EMI). This feature brings an unparalleled level of abstraction to client/
Server programming,.

Dynamic
Java programs carry with them substantial amounts of run-time type information that
1s used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness
of the applet environment, in which small fragments of bytecode may be dynamically
updated on a running system.

Data Types:

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,
double, and boolean. These can be put in four groups:

B Integers This group includes byte, short, int, and long, which are for whole-
valued signed numbers.

B Floating-point numbers This group includes float and double, which represent
numbers with fractional precision.

B Characters This group includes char, which represents symbols in a character
set, like letters and numbers.

B Boolean This group includes boolean, which is a special type for representing
true /false values.

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 6
Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages, including C /C++, support both signed and unsigned integers.

The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 -9,223 372 ,036,854,775,808 to 9,223 372 036,854,775 807
int 32 —2,147 483,648 to 2,147 483,647

short 16 -32,768 to 32,767

byte 8 =128 to 127

Let us look at each type of Integers briefly.

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from -128
To 127.
Eg:
byte b, c;

short
short is a signed 16-bit type. It has a range from 32,768 to 32,767.
Eg:
Short b,c;

int
The most commonly used integer type is int. It is a signed 32-bit type that has a range
from 2,147 483,648 to 2,147,483,647.
Eg:
int b,c;

long

long is a signed 64-bit type and is useful for those occasions where an int type is not
large enough to hold the desired value. The range of a long is quite large. This makes

it useful when big, whole numbers are needed.
Eg:
long b,c;

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating

expresaiohs that require fractional precision. i
Java implements the standard (IEEE-754) set of

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

floating-point types and operators. There are two kinds of floating-point types, float
and double, which represent single- and double-precision numbers, respectively. Their
width and ranges are shown here:

Name Width in Bits Approximate Range
double Hd 4.9e-324 to 1.8e+308
float 32 1.4e-045 to 3.4e+038

float

The type float specifies a single-precision value that uses 32 bits of storage. Single
precision is faster on some processors and takes half as much space as double precision,

but will become imprecise when the values are either very large or very small.
Here are some example float variable declarations:

flecat hightemp, lowtemp;

double

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have
been optimized for high-speed mathematical calculations. All transcendental math

functions, such as Sill[_}, cos(), and sqri(), return double values.

Here is a short program that uses double variables to compute the area of a circle:

/4 Compute the area of a circle.
class Area {
public static weid main(String args[]1) {
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately
a=pi*r * r; // compute area

System.cut.println{"Area of circle is " + a);

}

Characters

In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C4++. In C/C++, char is an integer
type that is 8 bits wide. This is not the case in Java. Instead, Java uses Unicode to represent
characters. Unicode defines a fully international character set that can represent all of
the characters found in all human languages. It i= a unification of dozens of character
sets, such as Latin, Greek, Arabic, Cyrillic, Hebrew, Katakana, Hangul, and many more.
For this purpose, it requires 16 bits. Thus, in Java char is a 16-bit type. The range of a

char is 0 to 65,536,

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
Example Program

/{ Demonstrate char data type.
class CharDemo {
public static veoid main(String args[]) {

char chl, chz;

chl = B8; // code fer X

chz = '¥';
System.cut.print({”"chl and ch2: ");
System.cut.println(chl + " " + ch2);

}
This program displays the following output:

chl and ch2: X ¥

Booleans
Java has a simple type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, such

asa<b.

Example Program

// Demcnstrate boclean valuses.
class BoolTest {
public static veid main(String args[]) {

boolean b;

b = false;
System.cut.println("b iz " + b);
b = true;

System.cut.println("b is " + b);

The output generated by this program is shown here:

b is false
b is true

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by
the combination of an identifier, a type, and an optional initializer. In addition, all

variables have a scope, which defines their visibility, and a lifetime.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of
a variable declaration is shown here:

type identifier | = value][, identifier [= value] ...] ;

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

Examples:
int a, b, c; /{ declares three ints, a, b, and c.
int d = 3, e, £ = 5; // declares three more ints, initializing

//d and f.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows
variables to be inihialized dynamically, using any expression valid at the ime the variable

1s declared.
Example Program

// Demonstrate dynamic initialization.

class DynInit {
public static wvoid main(String args[]) {
double a = 3.0, b = 4.0;

/7 o is dynamically initialized
double ¢ = Math.sgrt{(a * a + b * b);

System.cut.println("Hypotenuse is " + <);

The Scope and Lifetime of Variables

So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in
Chapter 2, a block is begun with an opening curly brace and ended by a closing curly
brace. A block defines a scope. Thus, each ime you start a new block, you are creating
a new scope. As you probably know from your previous programming experience, a
scope determines what objects are visible to other parts of your program. It also determines
the lifetime of those objects.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when yvou declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and /or
modification. Indeed, the scope rules provide the foundation for encapsulation.

// Demonstrate lifetime of a wariable.
class LifeTims {
public static void main(String args[]) {

int =;

for(x = 0; x < 3; xt+) {

int vy = -1; /f v is initialized each time block iz entered
System.ocut.printin{"y is: " + y); // this always prints -1
y = 100;

System.cut.println("y is now: " + ¥);

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 10

Arrays

An array is a group of like-typed variables that are referred to by a common name. Arrays
of any type can be created and may have one or more dimensions. A specific element
in an array is accessed by its index. Arrays offer a convenient means of grouping
related information.

One-Dimensional Arrays

A one-dimensional array is, essentially, a list of like-typed variables. To create an array,
yvou first must create an array variable of the desired type. The general form of a one-
dimensional array declaration is

type var-name] |;
For example, the following declares an array
named month_days with the type “array of int”:

int month days[];

Although this declaration establishes the fact that month_days is an array variable,
no array actually exists. In fact, the value of month_days is set to null, which represents
an array with no value. To link month_days with an actual, physical array of integers,

yvou must allocate one using new and assign it to month_days. new is a special operator
that allocates memory.

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements
in the array, and array-var is the array variable that is linked to the array. That is, to use
new to allocate an array, yvou must specify the type and number of elements to allocate.
The elements in the array allocated by new will automatically be initialized to zero.
This example allocates a 12-element array of integers and links them to month_days.

month _days = new int[l2];

After this statement executes, month_days will refer to an array of 12 integers. Further,
all elements in the array will be initialized to zero.

It is possible to combine the declaration of the array variable with the allocation of
the array itself, as shown here:

int month_days[] = new int[12];

Example Program
// Demonstrate One dimensional array
Class Arrayl

{

Public static void main(String arg[])

{

int month_days[]=new int[3];

month_days[0]=31,;
month_days[1]=28;

month_days[2]=31,
Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 11

System.out.println(“January has “+month_days[0]+” days.”);

¥
¥

Expected output:
January has 31 days.

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might
expect, look and act like regular multidimensional arrays. However, as you will see,

there are a couple of subtle differences. To declare a multidimensional array variable,
specity each additional index using another set of square brackets. For example, the
following declares a two-dimensional array variable called twoD.

int twoD[][] = mew int[4]1[5];

This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is implemented
as an array of arrays of int. Conceptually, this array will lock like the one shown in
Figure 3-1.

Right index determines column.

T T

[o][o]|[o][x]{[e][2]{[o](]}[o][4]

Left index [x](o] (][] | (2] | [(3] {[(x][4]

determines
FOW.

[2][0] | [2](x] | 2][2]| 2] 5] | (2] 4]

El|CIHEXEN] [EXENEA | EX]| B3 Y

Givens inttwoD [] [] = new int [4] [5];

Figure 3-1. A conceptual view of a 4 by 5, two-dimensional array

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:
type[| var-name;

Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent:

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 12
int al[] = new int[3];
int[] a2 = new int[3]:;

Procedure for Compiling and Executing a Java program

Step-1
Java Compilation:
C:\Program Files\Java\jdk1.5.0_05\bin>javac Stringl.java

Step-2
Java Execution:
C:\Program Files\Java\jdk1.5.0_05\bin>java Stringl

Output:
Hi Every one! This is Ateeq Ahmed, Asst. Professor of CSE Dept. & | am dealing

you Object Oriented Programming...

Operators:

Java provides a rich operator environment. Most of its operators can be divided

into the following four groups: arithmetic, bitwise, relational, and logical. Java also
defines some additional operators that handle certain special situations.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they
are used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

= Subtraction (also unary minus)

* Multiplication

/ Division

Yo Modulus

o Increment

= Addition assignment

—= Subtraction assignment
= Multiplication assignment
/= Division assignment

Vo= Modulus assignment

-—— Decrement

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

The Bitwise Operators
Java defines several bitwise operators which can be applied to the integer types, long,

int, short, char, and byte. These operators act upon the individual bits of their operands.
They are summarized in the following table:

Operator

&
I

f

T
B

Result

Bitwise unary NOT

Bitwise AND

Bitwise OR

Bitwise exclusive OR

Shift right

Shift right zero fill

Shift left

Bitwise AND assignment
Bitwise OR assignment
Bitwise exclusive OR assignment
Shift right assignment

Shift right zero fill assignment

Shift left assignment

Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are

shown here:

Operator

Java Basics

Result

Equal to

Mot equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

13

By H. Ateeq Ahmed

Learning JAVA in a Magical Way

Boolean Logical Operators

The Boolean logical operators shown here operate only on boolean operands. All
of the binary logical operators combine two boolean values to form a resultant

boolean value.

14

Operator Result

& Logical AND

| Logical OR

i Logical XOR (exclusive OR)
|l Short-circuit OR
&dz Short-circuit AND

! Logical unary NOT
= AND assignment
|= OR assignment

f= XOR assignment
== Equal to

= Not equal to

5 Ternary if-then-else

Control Statements:

to advance and branch based on changes to the state of a program. Java’s program

control statements can be put into the following categories: selection, iteration,
and jump. Selection statements allow your program to choose different paths of execution
based upon the outcome of an expression or the state of a variable. Iteration statements
enable program execution to repeat one or more statements (that is, iteration statements
form loops). Jump statements allow your program to execute in a nonlinear fashion. All
of Java's control statements are examined here.

! programming language uses control statements to cause the flow of execution

Java’s Selection Statements

Java supports two selechion statements: if and switch. These statements allow you to
control the flow of your program’s execution based upon conditions known only during

if

run time.

[t can be used to route program

execution through two different paths. Here is the general form of the if statement:

if (condition) statementl;
else statement?;

The if works like this: If the condition is true, then statement] 1s executed. Otherwise,

statement? (1f 1t exists) 1s executed.

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 15
Example Program

class Mytest
{

public static void main(String z[])

{
int age=20;

if(age>=18)

System.out.printIn("Eligible for voting!");
else

System.out.printIn("Not Eligible");

¥
¥

Expected Output
Eligible for voting!

Nested ifs

A nested if 1s an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an
else statement always refers to the nearest if statement that is within the same block
as the else and that is not already associated with an else. Here is an example:

if(i == 10) {
if{(j = 20) a = b;
ifik = 100y ¢ = d; // this if is=s
else a = o3 /f associated with this else

glze a = d; /f this else refers toc if(i == 10)

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

if{condition)
statement;
else if{condition)

statement:
else if(condition)
statement;

else
statement;

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
switch

16

The switch statement is Java’'s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression.
As such, it often provides a better alternative than a large series of if-else-if statements.

Here is the general form of a switch statement:

switch (expression) |
case Daluel:

[/ statement sequence

break;
case palue?:

[/ statement se quence

break;

case DialueN:

// statement sequence

break:;
default:

// default statement sequence

I

The expression must be of type byte, short, int, or char; each of the values specified
in the case statements must be of a type compatible with the expression. Each case
value must be a unique literal (that is, it must be a constant, not a variable). Duplicate

case values are not allowed.

Example Program

class Switchl

{

public static void main(String z[])

{

int i=2;
switch(i)
{
case 1.
System.out.printin("One");
break;

case 2:

System.out.printin("Two");

break;

default:

System.out.printin(*Invalid Choice!");

¥

¥
}

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 17
Iteration Statements

Java's iteration statements are for, while, and do-while. These statements create what
we commonly call loops. As you probably know, a loop repeatedly executes the same
set of instructions until a termination condition is met. As you will see, Java has a loop
to fit any programming need.

while

The while loop i1s Java’s most fundamental looping statement. It repeats a statement or
block while its controlling expression is true. Here 1s its general form:

while({condition) |
/ / body of loop
J

The condition can be any Boolean expression. The body of the loop will be executed as
long as the conditional expression is true. When condition becomes false, control passes
to the next line of code immediately following the loop. The curly braces are unnecessary
if only a single statement is being repeated.
Example Program

class Whilel
{

public static void main(String z[])
{
inti=1;

while(i<=5)

{

System.out.printin(i);

i++;

k
¥
¥

do-while

As you just saw, if the conditional expression controlling a while loop 1s initially false,
then the body of the loop will not be executed at all. However, sometimes it is desirable
to execute the body of a while loop at least once, even if the conditional expression is
false to begin with. In other words, there are times when you would like to test the
termination expression at the end of the loop rather than at the beginning. Fortunately,
Java supplies a loop that does just that: the do-while. The do-while loop always executes
its body at least once, because its conditional expression is at the bottom of the loop. Its
general form is

do |
/{ body of loop
| while (condition);

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 18
Example Program

class Dowhile

{

public static void main(String z[])
{
inti=1;

do

{
System.out.printIn(i);

i++;

} while(i<=5);
}
}
for

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is
a powerful and versatile construct. Here is the general form of the for statement:

for(initialization; condition; iteration) |
// body
J

If only one statement is being repeated, there is no need for the curly braces.

The for loop operates as follows. When the loop first starts, the initialization portion
of the loop is executed. Generally, this is an expression that sets the value of the loop
control variable, which acts as a counter that controls the loop. It is important to understand
that the initialization expression is only executed once. Next, condition is evaluated. This
must be a Boolean expression. It usually tests the loop control variable against a target
value. [f this expression is true, then the body of the loop is executed. If it is false, the
loop terminates. Next, the iteration portion of the loop is executed. This is usually an
expression that increments or decrements the loop control variable. The loop then iterates,
first evaluating the conditional expression, then executing the body of the loop, and
then executing the iteration expression with each pass. This process repeats until the
controlling expression is false.

Example Program

class Forl

{

public static void main(String z[])
{
int i;

for(i=1;i<=5;i++)

{

System.out.printin(i);

- -

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 19
Declaring Loop Control Variables Inside the for Loop

Often the variable that controls a for loop is only needed for the purposes of the loop
and is not used elsewhere. When this is the case, it is possible to declare the variable

inside the initialization portion of the for.

Example Program
class For2

{

public static void main(String z[])

{

for(int i=1;i<=5;i++) /1 is declared inside for

{
System.out.printin(i);

-

Using the Comma
There will be times when you will want to include more than one statement in the
mitialization and iteration portions of the for loop.

Example Program

/f Using the comma.
class Comma {
public static veoid main(String args[]) {
int a, b;

for{a=1l, b=4; a<b; a++, b-—-) {
System.out.println("a = " + a);
System.out.println("b = " + b);

Jump Statements

Java supports three jump statements: break, continue, and return. These statements
transfer control to another part of your program. Each is examined here.

Using break

In Java, the break statement has three uses. First, as you have seen, it terminates a
statement sequence in a switch statement. Second, it can be used to exit a loop. Third,
it can be used as a “civilized” form of goto. The last two uses are explained here.

Using break to Exit a Loop

By using break, you can force immediate termination of a loop, bypassing the
conditional expression and any remaining code in the body of the loop. When a break
statement is encountered inside a loop, the loop is terminated and program control
resumes at the next statement following the loop. Here is a simple example:

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 20
Example Program

class Breakl

{

public static void main(String z[])
L
inti;

for(i=1;i<=5;i++)

{

if(i==3)

break;

System.out.printIn(i);

}

System.out.printin(""Loop Breaked!");
}
¥

Expected Output:
1

2

Loop Breaked!

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also
be employed by itself to provide a “civilized” form of the goto statement. Java does
not have a goto statement, because it provides a way to branch in an arbitrary and

unstructured manner.

The general form of the labeled break statement is shown here:

breals Iabel;

Here, label 1s the name of a label that identifies a block of code. When this form of break
executes, control 1s transferred out of the named block of code. The labeled block of
code must enclose the break statement, but it does not need to be the immediately
enclosing block.
Example Program

/4 Using break as a civilized form of goto.
class Break {
public statiec weoid main(String args[]) {
boolean t = true;

first: {

second: |
third: {

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 21
System.cut.println{"Before the break.");

if({t) break second; // break out of second block

System.cut.println{"This won't execute");

}

System.cut.println("This won't exscute");
}
3

yestem.out.println{"This is after second bleck.");

}
Expected Output:

Before the break.
This is after second block.

Using continue

Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop, but stop processing the remainder of the code in its body
for this particular iteration.

Example Program

class Contl

{

public static void main(String z[])
{
int i;
for(i=1;i<=5;i++)
{
if(i==3)
continue;
System.out.printin(i);

¥
¥

Expected Output:
1

2
4
5

return

The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the

method.
Example Program:

{f Demonstrate return.

class Return {
public static veoid main{String args[]) {

boolean t = trus;

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 22

System.cut.println("Before the return.");
if{t) return; // return to caller

System.cut.println("This wen't execute.”);

}
Expected Output:

Before the return.

Type Conversion and Casting

If you have previous programming experience, then you already know that it is fairly
commeon to assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically. For example, it 1s
always possible to assign an int value to a long variable. However, not all types are
compatible, and thus, not all type conversions are implicitly allowed. For instance,
there is no conversion defined from double to byte. Fortunately, it is still possible to
obtain a conversion between incompatible types. To do so, you must use a cast, which
performs an explicit conversion between incompatible types. Let's look at both automatic
type conversions and casting.

Java’'s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

B The two types are compatible.

B The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, so no explicit cast
statement 15 required.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion
will not be performed automatically, because a byte is smaller than an int. This kind of
conversion is sometimes called a narrotwing conversion, since you are explicitly making
the value narrower so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast
is simply an explicit type conversion. It has this general form:

(target-type) value
Example:
int a;
byte b;
L
b = (byte) a;

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
Example Program

/{ Demonstrate casts.
class Conversion {
publie static wveid main(String args[]) {

byte b;
int 1 = 257;
System.out.println{"\nConversion of int
b = (byte) i;
System.cut.println("i and b " + 1 + " "

Expected Output:

Conversion of int to byte.
i and b 257 1

Class Fundamentals

to byte.");

+ b);

23

language is built because it defines the shape and nature of an object. As such,

The class is at the core of Java. It is the logical construct upon which the entire Java

the class forms the basis for object-oriented programming in Java. Any concept

vou wish to implement in a Java program must be encapsulated within a class.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an object, and an object 1s an instance of a class. Because an
object 1s an instance of a class, you will often see the two words object and instance used

interchangeably.

The General Form of a Class

A class is declared by use of the class keyword. The classes that have been used up
to this point are actually very limited examples of its complete form. Classes can (and
usually do) get much more complex. The general form of a class definition is shown here:

class classname |
type instance-variablel;
type instance-variable2;
/o

type instance-variableN;

type methodnamel (parameter-list) |
// body of method
I

type methodname (parameter-list) |
// body of method

/.
type methodnameN(parameter-list) |
// body of method

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 24
The data, or variables, defined within a ¢lass are called instance variables. The code

is contained within methods. Collectively, the methods and variables defined within
a class are called members of the class.
Example Program

/* A program that uses the Box class.

Call this file BoxDemc.java
*y
class Box {

double width:

double height;

double depth;

/f This class declares an cbject of type Box.
class BoxDemo {
public static wveoid main(String args[]) {
Box mybox = new Box();
double wol;

// assign wvalues to mybox's instance wvariables
mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.cut.println({"Volume is " + wol);

Expected Output:
Volume is 2000.0

Declaring Objects

As just explained, when you create a class, you are creating a new data type. You can
use this type to declare objects of that type. However, obtaining objects of a class is a
two-step process. First, you must declare a variable of the class type. This variable does
not define an object. Instead, it is simply a variable that can refer to an object. Second,
yvou must acquire an actual, physical copy of the object and assign it to that variable. You
can do this using the new operator. The new operator dynamically allocates (that

is, allocates at run time) memory for an object and returns a reference to it. This
reference is, more or less, the address in memory of the object allocated by new.

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to
show each step more clearly:

Box mybox; // declare reference to obiject
mybox = new Box(); // allocate a Box cbject

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

25

Statement

Box mybox;

mybox = new Box(});

null

mybox

Effect

= 1|.-"."I1.:| 1 h

mybox

Height

Depth

Box cbject

Figure 6-1. Declaring an object of type Box

Introducing Methods

As mentioned at the beginning of this chapter, classes usually consist of two things:
instance variables and methods. The topic of methods is a large one because Java gives

them so much power and flexability.
This 1s the general form of a method:

type name(parameter-list) |
// body of method

|

Example Programs

//Program on methods
class Box

{
double width,depth,height,vol,

void volume()

{
vol=width*depth*height;
}

void display()
{

System.out.printin("Volume is "+vol);

¥
¥

class Method1
{

public static void main(String z[])
{

Box b=new Box();

b.width=2;

b.depth=2;

b.height=3;

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way

b.volume();
b.display();

¥
¥

Expected Output:

Volume is 12.0
//Program on Paramaterised method

class Box

{
double width,depth,height,vol;

void dimensions(int w,int d,int h)

{
width=w;
depth=d,;
height=h;
}

void volume()

{
vol=width*depth*height;

¥
void display()
{

System.out.printIn(*VVolume is "+vol);

¥
¥

class Method?2
{

public static void main(String z[])

{

Box b=new Box();

b.dimensions(2,2,2);
b.volume();
b.display();

¥
¥

Expected Output:

Volume is 8.0

Java Basics

26

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 27
Constructors

It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of

a constructor.

A constructor inttializes an object immediately upon creation. It has the same name
as the class in which it resides and is syntactically similar to a method. Once defined,
the constructor is automatically called immediately after the object is created, before the
new operator completes. Constructors look a little strange because they have no return
type, not even void. This is because the implicit return type of a class’ constructor is the
class type itself. [t is the constructor’s job to initialize the internal state of an object so
that the code creating an instance will have a fully initialized, usable object immediately.

Example Program

//[Program on Constructor
class Box

{
double width,depth,height,vol,

Box()

{
width=3;
depth=3;
height=3;
}

void volume()
{
vol=width*depth*height;

¥
void display()
{

System.out.printin("Volume is "+vol);

¥
¥

class Constructl

{

public static void main(String z[])
{

Box b=new Box();

b.volume();

b.display();

}

}

Expected Output:

Volume is 27.0

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
//Program on Paramaterised Constructor

class Box
{
double width,depth,height,vol,

Box(int w,int d,int h)
{

width=w;
depth=d,
height=h;
¥

void volume()

{
vol=width*depth*height;

}

void display()
{

System.out.printin("Volume is "+vol);

¥
¥

class Construct2

{

public static void main(String z[])

{

Box b=new Box(4,4,4);
b.volume();

b.display();

}

}

The this Keyword

28

Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You
can use this anywhere a reference to an object of the current class’ type is permitted.

Example:

// Use this to resclwve name-space collisions.

Box(double width, double height, doubkle depth) {

this.width = width;
this.height = height;
this.depth = depth;

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 29
Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be
wondering how such objects are destroyed and their memory released for later
reallocation. In some languages, such as C++, dynamically allocated objects must
be manually released by use of a delete operator. Java takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is
called garbage collection.

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For
example, if an object is holding some non-Java resource such as a file handle or
window character font, then you might want to make sure these resources are freed
before an object is destroyed. To handle such situations, Java provides a mechanism
called finalization. By using finalization, you can define specific actions that will occur
when an object 1s just about to be reclaimed by the garbage collector.

The finalize() method has this general form:

protected void finalize()
H
// finalization code here

I

It 1s important to understand that finalize() 1s only called just prior to garbage collection.

Introducing Access Control

As yvou know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through
encapsulation, vou can control what parts of a program can access the members of a
class. By controlling access, you can prevent misuse.

Java's access specifiers are public, private, and protected. Java also defines a
default access level. protected applies only when inheritance is involved. The other
access specifiers are described next.

Let’s begin by defining public and private. When a member of a class is modified
by the public specifier, then that member can be accessed by any other code. When a
member of a class is specified as private, then that member can only be accessed by
other members of its class. Now vou can understand why main() has always been
preceded by the public specifier. [t is called by code that is cutside the program—that
is, by the Java run-time system. When no access specifier is used, then by default the
member of a class i1s public within its own package, but cannot be accessed outside of
its package.

Example:

pukblic int i;
private double J;

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 30

Private No modifier Protected Public

Same class Yes Yes Yes Yes
Same package No Yes Yes Yes
subclass

Same package No Yes Yes Yes
non-subclass

Dhifferent Mo Mo Yes Yes
package

subclass

Dhifferent Mo Mo Mo Yes
package

non-subclass

Table 9-1. Class Member Access

Overloading Methods

In Java it is possible to define two or more methods within the same class that share
the same name, as long as their parameter declarations are different. When this is
the case, the methods are said to be overloaded, and the process is referred to as
method overloading. Method overloading is one of the ways that Java implements
polymorphism.

When an overloaded method is invoked, Java uses the type and /or number of
arguments as its guide to determine which version of the overloaded method to
actually call. Thus, overloaded methods must differ in the type and /or number of
their parameters.

Example Program

// Demonstrate method overloading.
class OverloadDemo {
vold testi() {
System.cut.println({"No paramesters");

{/ overload test for one integer paramster.
vold test(int a) {
System.cut.println("a: " + a);

{// overlead test for two integer parameters.
void test{int a, int b) {
System.cut.println("a and b: " + a + " " + b);

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 31

class Overleoad {
public static veid main(String args[]) {
OwverloadDemo ob = new OverloadDemo();

/4 eall all wversions of test()

ob.testi);
ob.test{l0);
ch.test{1l0, 20);
}

Expected Output:
No parameters
a: 10
a and b: 10 20

Overloading Constructors

In addition to overloading normal methods, you can also overload constructor

methods.
Example Program

//[Program on constructor overloading

class Box

{

double w,d,h,vol;

Box(int w,int d,int h)
{

this.w=w;
this.d=d;
this.h=h;

¥

void volume()

{
vol=w*d*h:

}
void display()
{

System.out.printin("Volume="+vol);

¥
¥

class Constover

{

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
public static void main(String z[])
{

Box bl=new Box();

Box b2=new Box(3,3,3);
b1.volume();

b1.display();

b2.volume();
b2.display();
¥
}

Expected Output:

Volume=8.0
Volume=27.0

Parameters Passing:

In general, there are two ways that a computer language can pass an argument to a
subroutine. The first way is call-by-value. This method copies the value of an argument
into the formal parameter of the subroutine. Therefore, changes made to the parameter
of the subroutine have no effect on the argument. The second way an argument can be
passed is aall-by-reference. In this method, a reference to an argument (not the value of
the argument) is passed to the parameter. Inside the subroutine, this reference is used
to access the actual argument specified in the call. This means that changes made to the
parameter will affect the argument used to call the subroutine. As vou will see, Java
uses both approaches, depending upon what is passed.

Example Program

/ICall by value
class Call
{
void change(int x,int y)
{
X++;
y++;
System.out.printin(*Changed values are "+x+" "+y);
b
¥

class Callvalue

{

public static void main(String z[])

{

Call ob=new Call();

int a=10,b=20;

System.out.printin("Values before call are "+a+" "+b);
ob.change(a,b);

System.out.printin("Values after call are "+a+" "+Db);
}

}

32

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way
Expected Output:

Values before call are 10 20
Changed values are 11 21
Values after call are 10 20

33

When you pass an object to a method, the situation changes dramatically, because
objects are passed by reference. Keep in mind that when you create a variable of a class
tvpe, you are only creating a reference to an object. Thus, when vou pass this reference
to a method, the parameter that receives it will refer to the same object as that referred
to by the argument. This effectively means that objects are passed to methods by use of
call-by-reference. Changes to the object inside the method do affect the object used as

an argument. For example, consider the following program:

Example Program

//Call by reference

class Call
{
int a,b;
Call(int x,int y)

a=x;
b=y;
}

void change(Call ob)

{

ob.at++;

ob.b++;

System.out.printin("Changed values are "+ob.a+" "+o0b.b);

¥
¥

class Callreference

{

public static void main(String z[])

{

Call ob=new Call(10,20);

System.out.printin("Values before call are "+ob.a+" "+ob.b);
ob.change(ob);

System.out.printin(Values after call are "+ob.a+" "+ob.b);

}
¥

Expected Output:

Values before call are 10 20
Changed values are 11 21
Values after call are 11 21

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way
Recursion

Java supports recursion. Recursion is the process of defining something in terms of

34

itself. As it relates to Java programming, recursion is the attribute that allows a method

to call itself. A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 x 2 x 3, or 6. Here is how a factorial can be computed by

use of a recursive method:

Example Program
ff A simple example of recursicn.

class Factorial {
/{ this is a recursive function
int fact(int n) {
int result;

if(n==1) return 1;
result = fact(n-1) * n;
return result;

class Recursion {

public static void main{String args[]) {

Factorial £ = new Factorial():;
System.cut.println("Factorial of 3 1is " + f£.fact(3));
System.cut.println("Factorial of 4 is " + f£.fact(4));

[

Expected Output:

System.cut.println("Factorial of 5 iz " + f.fact(5));

Factorial of 3 is &
Factorial of 4 is 24
Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may
seem a bit confusing. Here is how it works. When fact() is called with an argument of
1, the function returns 1; otherwise it returns the product of fact(n-1)*n. To evaluate
this expression, fact() is called with n=1. This process repeats until n equals 1 and the
calls to the method begin returning.

String Handling:

As is the case in most other programming

languages, in Java a string is a sequence of characters. But, unlike many other
languages that implement strings as character arrays, Java implements strings as

objects of type String,

Java Basics

By H. Ateeq Ahmed

Learning JAVA in a Magical Way 35
Implementing strings as built-in objects allows Java to provide a full complement

of features that make string handling convenient. For example, Java has methods to

compare two strings, search for a substring, concatenate two strings, and change the

case of letters within a string. Also, String cbjects can be constructed a number of

ways, making it easy to obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string
that cannot be changed. That is, once a String object has been created, you cannot change
the characters that comprise that string. At first, this may seem to be a serious restriction.

However, such is not the case. You can still perform all types of string operations. The
difference is that each time vou need an altered version of an exasting string, a new String
object is created that contains the modifications. The original string is left unchanged. This
approach is used because fixed, immutable strings can be implemented more efficiently
than changeable ones. For those cases in which a modifiable string is desired, there is a
companion class to String called StringBuffer, whose objects contain strings that can be
modified after they are created. _)

One last point: To say that the strings within objects of type String are
unchangeable means that the contents of the String instance cannot be changed after it
has been created. However, a variable declared as a String reference can be changed to
point at some other String object at any time.

The String Constructors

The String class supports several constructors. To create an empty String, you call the
default constructor. For example,

String = = new String();
will create an instance of String with no characters in it.

Example Program
/7 Construct one S8tring from ancther.

class MakeString {
public static weoid main(String args[]) {

char c[] = {"J', 'a', 'v', 'a'};
String sl = new String(c);
String s2 = new String(sl);
System.cut.println(sl);
System.cut.println(sz);
}

h

Expected Output:

Java

Java

String Length

The length of a string is the number of characters that it contains. To obtain this value,
call the length() method, shown here:
int length()

The following fragment prints “3”, since there are three characters in the string s:

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

System.out.println(s.length{));

Special String Operations

Because strings are a common and important part of programming, Java has added
special support for several string operations within the syntax of the language. These
operations include the automatic creation of new String instances from string literals,
concatenation of multiple String objects by use of the + operator, and the conversion of
other data types to a string representation. There are explicit methods available to
perform all of these functions, but Java does them automatically as a convenience for
the programmer and to add clarity.

String Concatenation

In general, Java does not allow operators to be applied to String objects. The one
exception to this rule is the 4 operator, which concatenates two strings, producing a
String object as the result. This allows you to chain together a series of + operations.
For example, the following fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years cld.";

System.out.printlnis);

This displays the string “He 1= 9 years old.”

Example Program

//Concatenating long string using '+"

class Stringl

{
public static void main(String z[])

{

String str="Hi Every one!"+
" This is Ateeq Ahmed,"+
" Asst. Professor of CSE Dept."+
" & | am dealing you Object Oriented Programming...";

System.out.printIn(str);
¥
}

Expected Output:

Hi Every one! This is Ateeq Ahmed, Asst. Professor of CSE Dept. & | am dealing you Object Oriented
Programming...

36

Java Basics By H. Ateeq Ahmed

Learning JAVA in a Magical Way 37

Compilation & Execution of a Java program

=

MyProgram,java MyProgram.class My Program

ﬁ Compiler @ ﬁ ; 0100101... |
Z — ™ P —|=Z (i -
_ — -

¢ In the Java programming language, all source code is first written in plain text files ending with

the .java extension.

e Those source files are then compiled into .class files by the javac compiler.

e A .class file does not contain code that is native to your processor; it instead contains bytecode —
the machine language of the Java Virtual Machine! (Java VM).

e The java launcher tool then runs your application with an instance of the Java Virtual Machine.

|' Java Program

clasg HelloWorldapp {
public static woid main(string [] args) {
System.out .println{“Hello World!“};
}
}

HelloWorldApp.iava l

Compiler L)

[JvM

<

E’-.a '

MacOs

UNIX
e Because the Java VM is available on many different operating systems, the same .class files are
capable of running on Microsoft Windows, the Solaris™ Operating System (Solaris OS), Linux,

or Mac OS.

*hkkkkkk

Java Basics By H. Ateeq Ahmed

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html#FOOT

Learning JAVA in a Magical Way 38

UNIT-1I1I

Abstraction

An essential element of object-oriented programming is abstraction.

Humans manage complexity through abstraction. For example, people do not think of a
car as a set of tens of thousands of individual parts.

They think of it as a well-defined object with its own unique behavior.

This abstraction allows people to use a car to drive to the grocery store without being
overwhelmed by the complexity of the parts that form the car.

They can ignore the details of how the engine, transmission, and braking systems work.
Instead they are free to utilize the object as a whole.

Hierarchical Abstractions

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces.

From the outside, the car is a single object. Once inside, you see that the car consists of
several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone,
and so on. In turn, each of these subsystems is made up of more specialized units.

The point is that you manage the complexity of the car (or any other complex system)
through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects.

A sequence of process steps can become a collection of messages between these objects.
Thus, each of these objects describes its own unique behavior.

You can treat these objects as concrete entities that respond to messages telling them to
do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding.

It is important that you understand how these concepts translate into programs.

Thus object-oriented programming is a powerful and

natural paradigm for creating programs that survive the inevitable changes accompanying the

life cycle of any major software project.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 39

Subclass and Subtype

It is therefore useful to define two separate concepts:
e Tosay that A is a subclass of B merely asserts that A is formed using inheritance.
e Tosay that A is a subtype of B asserts that A preserves the meaning of all the operations
in B.
It is possible to form subclasses that are not subtypes; and form subtypes that are not subclasses.
The term subtype is used to refer to a subclass relationship in which the principle of substitution
is maintained to distinguish such forms from the general subclass relationship.

Substitutability

“The principle of substitution says that if we have two classes, A and B, such that class B is a
subclass of class A, it should be possible to substitute instances of class B for instances of class A
in any situation with no observable effect. ”

All object oriented languages will support the principle of substitution.
Most support this concept this concept in a straightforward way i.e. the parent class simple holds
a value from the child class.

Inheritance
“Inheritance is the process by which an object of one class known as subclass acquires the
properties of object of another class known as superclass. ”

Types of Inheritance
The following are the various types of inheritance

= Single level Inheritance
= Multilevel Inheritance
= Hierarchical Inheritance
= Multiple Inheritance

= Hybrid Inheritance

Single level Inheritance
The process of deriving a single class known as subclass from a single class known as superclass
in known as single level inheritance.

superclass

B subclass

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 40

Multilevel Inheritance

The process of deriving a new subclass from the already existing subclass is known as Multilevel
inheritance.

In this inheritance, a super class will have many levels of subclasses.

A

Hierarchical Inheritance

The process of deriving multiple subclasses from the same superclass is known as Hierarchical
inheritance.

A

o

B C

Multiple Inheritance

The process of deriving a single subclass from multiple superclasses is known as Multiple
Inheritance.

Java doesn’t support multiple inheritance through classes but it supports this concept by using
interfaces.

Hybrid Inheritance
It is a combination of Hierarchical and Multiple inheritance.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 41

Forms of Inheritance
Inheritance is used in a number of ways for different purposes.
Many of these types of inheritance are given their own special names.
The following are some of these specialized forms of inheritance.
= Specialization
= Specification
= Construction
= Extension
= Limitation

= Combination

Let us discuss each of them briefly.

Subclassing for specialization
e It is the most common use of inheritance.
e Insubclassing for specialization, the new class is a specialized form of the parent class or
superclass but satisfies all the specifications of the parent class.
e Hence subclassing for specialization is the most common and popular form of inheritance
in which a subclass is derived from the parent class.

Subclassing for specification
e Another frequent use of inheritance is to guarantee that classes maintain a certain
common interface i.e. they implement same methods.
e This is a special case of subclassing for specialization, except that the subclasses are not
refinements of an existing type but rather realization of an incomplete abstract class.
e Insuch cases, the parent class is sometimes known as an abstract class.

Subclassing for construction
e Aclass can inherit almost all of its desired functionality from a parent class.
e If the parent class is used as a source for behavior, but the child class has no is-a
relationship to the parent, then we say the child class is using inheritance for construction.
e Itis generally not a good idea to use subclassing for construction, since it can break the
principle of substitutability, but nevertheless sometimes used practically.

Subclassing for extension
e Ifachild class generalizes or extends the parent class by providing more functionality,
but does not override any method. It is called inheritance for generalization whereas
subclassing for extension adds totally new abilities.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 42

Extension only adds new methods to those of the parent class.

An example of subclassing for extension is a StringSet class that inherits from a generic
Set class, but is specialized for holding string values.

The child class doesn't change anything inherited from the parent, it simply adds new
features.

Subclassing for limitation

Subclassing for limitation occurs when the behavior of the subclass is smaller or more
restrictive than the behavior of the parent class.

If a child class overrides a method inherited from the parent in a way that makes it
unusable (for example, issues an error message), then we call it as inheritance for
limitation.

For example, you have an existing List data type that allows items to be inserted at either
end, and you override methods allowing insertion at one end in order to create a Stack.
Generally not a good idea, since it breaks the idea of substitution. But again, it is
sometimes found in practice.

Subclassing for combination

A common situation is a subclass that represents a combination of features from two or
more parent classes.

A teaching assistant, for example, may have characteristics of both a teacher and a
student and can therefore logically behave as both.

The ability of a class to inherit from two or more parent classes is known as Multiple
Inheritance.

Benefits of Inheritance

The following are some of the important benefits of the

proper use of inheritance.

Software reusability
Code sharing
Consistency of interface
Software components
Rapid prototyping
Information hiding

Let us examine each of them briefly.

Software Reusability
When behavior is inherited from another class, the code that provides the behavior does not have
to be rewritten in the subclasses.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 43

Code Sharing
e Code Sharing can occur on several levels with object oriented techniques.
e At one level, many users can use the same classes.
e Another example is a single parent class which can be shared by many number of
subclasses.
e Insimple terms, many users can share the same part of code which avoids rewriting of
code.

Consistency of Interface
It states that, when two or more classes inherit from the same superclass, it is assured that the
behavior they inherit will be the same in all cases.

Software Components
Inheritance provides programmers with the ability to construct reusable software components.
The goal is to develop new applications with little actual coding

Rapid Prototyping
e When a software system is developed by using large number of reusable components
then the development can be done very fast or rapid.
e Thus software systems can be generated more quickly and easily.

Information Hiding
e A programmer who uses a software component needs only to understand the nature of the
component and its interface.
e It is not necessary for the programmer to have detailed information such as the techniques
used to implement the component.

Costs of Inheritance
Although the benefits of inheritance in object oriented programming are great, but inheritance
also have some disadvantages when it is not used in a correct way.

= Execution Speed
= Program Size
= Message Passing Overhead

= Program Complexity.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 44

Member access rules
Refer Unit-11 Topic: Access Control

Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private.

Example Program

class A

{

private int a=10;

public int b=20;

protected int c=30;

intd=40; //dis a no modifier variable

}

class B extends A

{
void display()
{
System.out.printin(“a="+a); // generates an error becoz a is declared as private
System.out.printin("b="+b);
System.out.printin(*"c="+c);
System.out.printin("d="+d);
}

}

class Access

{

public static void main(String z[])

{

B ob=new B();

ob.display();

}

}

Super keyword

“A super is a keyword in java used to refer to the super class.”

Whenever a subclass needs to refer to its immediate superclass, it can do so by use of
the keyword super.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 45

The keyword super has two uses

e The first calls the superclass constructor.
e The second is used to access a member of the superclass that has been hidden by a
member of a subclass.

Using super to call superclass constructor
A subclass can call a constructor method defined by its superclass by use of the following
form of super:

super(parameter-list);
Here, parameter-list specifies any parameters needed by the constructor in the superclass.
super() must always be the first statement executed inside a subclass constructor.

Example Program
/Ito call super class constructor
class A
{
A(int x)
{

X++;

System.out.printIn("x="+x);

}
}
class B extends A
{
B(int y)
{
super(y);
System.out.printin("'y="+y);

¥
k

class Superl

{

public static void main(String z[])
{

B b=new B(10);

¥

¥
Expected Output

x=11
y=10
Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

Using super to access members of a superclass

46

This second form of super is most applicable to situations in which member names of a

subclass hide members by the same name in the superclass.
Syntax
super.member

Here, member can be either a method or an instance variable.

Example Program1l
//Using Super keyword to access variables of a super class

class A

{

int a=10;
void displayA()
{
System.out.printin("a in class A="+a);
}

}

class B extends A

{

int a=20;
void displayB()
{

System.out.printin("a in class B="+super.a);

k
¥

class Super2

{

public static void main(String z[])
{

B b=new B();

b.displayA();

b.displayB();

}

}
Expected Output

ain class A=10
ain class B=10

Inheritance

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 47

Example Program?2
//Using Super to call overridden method of a super class

class A

{
void show()
{
System.out.printin("show() in class A");
}

}

class B extends A

{
void show()
{

super.show(); //invokes super class method show()
System.out.printin(*"show() in class B");

}
}
class Super3
{
public static void main(String z[])
{
B b=new B();
b.show();
}
}

Expected Output
show() in class A
show() in class B

final keyword

e The keyword final has three uses.
e First, it can be used to create the equivalent of a named constant.
e The other two uses of final apply to inheritance.

Using final with variables

e A variable can be declared as final.

e Doing so prevents its contents from being modified.

e This means that you must initialize a final variable when it is declared. (In this usage,
final is similar to const in C/C++.)

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 48

Example
final int a=10;

Using final with Inheritance

(a) Using final to prevent Overriding
e While method overriding is one of Java's most powerful features, there will be times
when you will want to prevent it from occurring.

e Todisallow a method from being overridden, specify final as a modifier at the start of its
declaration.

e Methods declared as final cannot be overridden.

Example Program
class A

{

final void show()

{
System.out.println(“show() in class A is final);
}
}

class B extends A

{

void show() // creates ERROR: can’t override final method

{
System.out.println(“show() in class B”);
}
}

class Finall

{

public static void main(String z[])
{

B ob=new B();

ob.show();

}

}

(b)Using final to prevent Inheritance
e Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final.
e Declaring a class as final implicitly declares all of its methods as final, too.
e As you might expect, it is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 49

Example
final class A

{
/...

¥

class B extends A // ERROR: can’t inherit a final class

{
/...

¥

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass is said to override the method in the
superclass.

When an overridden method is called from within a subclass, it will always refer to the version
of that method defined by the subclass.

The version of the method defined by the superclass will be hidden.

Example Program

class A

{

void show()

{

System.out.println(“show() in class A”);
}

}

class B extends A

{

void show() // subclass method overrides the superclass method “show()”
{

System.out.println(“show() in class B”);
}

}

class Overriding

{

public static void main(String z[])

{

B ob=new B();

ob.show();

}

}

Expected Output
show() in class B

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 50

Polymorphism through Method Overriding
Dynamic Method Dispatch (Runtime Polymorphism)

e Method overriding forms the basis for one of Java's most powerful concepts: dynamic
method dispatch.

e Dynamic method dispatch is the mechanism by which a call to an overridden function is
resolved at run time, rather than compile time.

e Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

e Let's begin by restating an important principle: a superclass reference variable can refer
to a subclass object.

e Java uses this fact to resolve calls to overridden methods at run time.

e Here is how. When an overridden method is called through a superclass reference, Java
determines which version of that method to execute based upon the type of the object
being referred to at the time the call occurs.

e Thus, this determination is made at run time.

Example Program
/[Runtime Polymorphism or Dynamic method dispatch

class A
{
void show()
{
System.out.printin(show() in class A");
}
}
class B extends A
{
void show()
{
System.out.printIn(*show() in class B");
}
}
class C extends A
{
void show()
{
System.out.printin("show() in class C");
}
}

Inheritance By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

class Runtime

{

public static void main(String z[])
{

A a=new A();
B b=new B();
C c=new C();
A ref;

ref=a;
ref.show();
ref=b;
ref.show();
ref=c;
ref.show();

}

}
Expected Output

show() in class A
show() in class B
show() in class C

Abstract class

51

e Sometimes we want to create a superclass that only defines a generalized form that will
be shared by all of its subclasses, leaving it to each subclass to fill in the details.

e Such a class determines the nature of the methods that the subclasses must implement.

e Injava, the class that contains abstract methods is known as “abstract class”

e Abstract class can also contains concrete methods like a normal class.

e Variables can also be declared in the abstract class.

e Abstract methods are incomplete methods and hence abstract class also becomes

incomplete class.

e Objects cannot be created to an abstract class.
e Thus the class that extends the abstract class should provide definition to all the methods

declared in the abstract class.

To declare an abstract method, use this general form

abstract type name(parameter-list);

Example

abstract void show();

The above method show() is an abstract method as

it doesn’t have body and its declaration should end with semicolon(;).

Inheritance

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

Example Program

/Iprogram to show the use of abstract class

abstract class Marks

{

int tot=100;
abstract void internal(); /I abstract methods
abstract void external();

void total() /[concrete method

{
System.out.printin("Total Marks:"+tot);
}

}

class Detail extends Marks

{

void internal()

{
System.out.printIn("Int:30 marks");

}

void external()

{
System.out.printin("Ext:70 marks");
}

}

class Abstractl

{

public static void main(String z[])
{

Detail d=new Detail();
d.internal();

d.external();

d.total();

¥

}
Expected Output

Int:30 marks
Ext:70 marks
Total Marks:100

Inheritance

52

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 53

UNIT-IV

Packages

“A Package is a collection of classes which provides high level of access protection and
name space management.”

e Java provides a mechanism for partitioning the class name space into more
manageable chunks. This mechanism is the package.

e Packages are stored in a hierarchical manner and are manually imported into new
class definitions.

e For example, a package allows you to create a class named A, which you can store in
your own package without concern that it will collide with some other class named A
stored elsewhere.

e Thus package is both a naming and a visibility control mechanism.

e We can define classes inside a package that are not accessible by code outside that
package.

Defining a Package

e To create a package is quite easy: simply include a package command as the first
statement in a Java source file.

e Any classes declared within that file will belong to the specified package.

e The package statement defines a name space in which classes are stored.

e If we omit the package statement, the class names are put into the default package,
which has no name.

The general form of the package statement is as follows
package nameofpackage;

Example

package packl;

e The package statement simply specifies to which package the classes defined in a file
belong.

e Java uses file system directories to store packages.

e For example, the .class files for any classes you declare to be part of packl must be
stored in a directory called packl.

e Package name is case sensitive, and the directory name must match the package name
exactly.

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 54

Java also allows us to create a hierarchy of packages.
To do so, simply separate each package name from the one above it by use of a period(.)
The general form of a multileveled package statement is shown below.

package packl.pack2.packa3;

where pack3 is a sub package of pack2 which is a sub package of packl.

Example
package packl;
public class A
{
public void showA()
{
System.out.println(“showA() method.”);
}

The class that is to be stored in the package must be declared as
public because if we want to access it from outside the class.

Importing Packages

Java provides import statement to access individual or all the classes belonging to a package.
In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions.

The general form of the import statement is as follows

import packagename.classname;

Example
import packl.pack2.A;

e Here, packl is the name of a top-level package, and pack2 is the name of a
subordinate package inside the outer package separated by a dot (.).

e There is no practical limit on the depth of a package hierarchy, except that imposed by
the file system.

e Finally, you specify either an explicit classname or a star (*), which indicates that the
Java compiler should import the entire package.

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 55
Example Program

Il program to show how to define and access the package

package packl; // defining a package A.java
public class A
{
public void show()
{
System.out.println(“show() method.”);
}
}
import packl.A; /I accessing a package Packagel.java

class Packagel

{

public static void main(String z[])
{

A ob=new A();

ob.show();

}

}

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 56

Understanding CLASSPATH

Before an example that uses a package is presented, a brief discussion of the
CLASSPATH environmental variable is required. While packages solve many problems
from an access control and name-space-collision perspective, they cause some curious
difficulties when you compile and run programs. This is because the specific location that the
Java compiler will consider as the root of any package hierarchy is controlled by
CLASSPATH.

Until now, you have been storing all of your classes in the same, unnamed default
package. Doing so allowed you to simply compile the source code and run the Java
interpreter on the result by naming the class on the command line. This worked because the
default current working directory (.) is usually in the CLASSPATH environmental variable
defined for the Java run-time system, by default. However, things are not so easy when
packages are involved. Here's why.

Assume that you create a class called PackTest in a package called test. Since your
directory structure must match your packages, you create a directory called test and put
PackTest.java inside that directory. You then make test the current directory and compile
PackTest.java. This results in PackTest.class being stored in the test directory, as it should
be. When you try to run PackTest, though, the Java interpreter reports an error message
similar to "can't find class PackTest." This is because the class is now stored in a package
called test. You can no longer refer to it simply as PackTest. You must refer to the class by
enumerating its package hierarchy, separating the packages with dots. This class must now be
called test.PackTest. However, if you try to use test.PackTest, you will still receive an error
message similar to "can't find class test/PackTest."”

The reason you still receive an error message is hidden in your CLASSPATH
variable. Remember, CLASSPATH sets the top of the class hierarchy. The problem is that
there's no test directory in the current working directory, because you are in the test
directory, itself.

You have two choices at this point: change directories up one level and try java
test.PackTest, or add the top of your development class hierarchy to the CLASSPATH
environmental variable. Then you will be able to use java test.PackTest from any directory,
and Java will find the right .class file. For example, if you are working on your source code
in a directory called C:\\myjava, then set your CLASSPATH to .;C:\myjava;C:\java\classes.

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 57
Interfaces

e Using the keyword interface, you can fully abstract a class from its implementation.

e That is, using interface, you can specify what a class must do, but not how it does it.

e Interfaces are syntactically similar to classes, But they contain final variables, and
their methods are declared without any body.

e Once an interface is defined, any number of classes can implement it.

e Also, one class can implement any number of interfaces.

e To implement an interface, a class must create the complete set of methods defined by
the interface.

e However, each class is free to determine the details of its own implementation.

e By providing the interface keyword, Java allows you to fully utilize the "one
interface, multiple methods" aspect of polymorphism.

e Multiple Inheritance is achieved in java through interfaces.

Defining an Interface
An interface is defined by using a keyword “interface”.

Syntax

access interfacename

{

return-type method-namel(parameter-list);
return-type method-name2(parameter-list);
type final-varnamel = value;

type final-varname2 = value;

...

return-type method-nameN(parameter-list);
type final-varnameN = value;

¥

Explanation

e Here, access is either public or no modifier.

e Here name is the name of the interface.

e Notice that the methods which are declared have no bodies. They end with a
semicolon
after the parameter list. They are, essentially, abstract methods.

e Each class that includes an interface must implement all of the methods.

e Variables can be declared inside the interface declarations.

e They are implicitly final and static, meaning they cannot be changed by the
implementing class. They must also be initialized with a constant value.

e All methods and variables are implicitly public if the interface, itself, is declared as
public.

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 58
Example

interface Marks

{

void internal();
void external();

ks

The above interface named “Marks” contain two abstract methods
which are automatically public.

Implementing Interface
e Once an interface has been defined, one or more classes can implement that interface.
e To implement an interface, include the implements keyword in a class definition, and
then implement the methods defined by the interface.
Syntax

access class classname [extends superclass] implements [interfacel, interface2,....]

{
/[class body

ks

Explanation

e Here, access is a modifier.

e |If a class implements more than one interface, the interfaces are separated with a
comma.

e The methods that implement an interface must be declared public.

e Also, the type signature of the implementing method must match exactly the type
signature.

e specified in the interface definition.

Example Program
/[program to show the use of interface
interface Marks

{
int tot=100;

void internal();
void external();

}
class Detail implements Marks
{
public void internal()
{
System.out.printIn("Int Marks=30");
}

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way
public void external()

{
System.out.printin("Ext Marks=70");

ks

void total()

{
System.out.printin("Total Marks="+tot);
}

}

class Interfacel

{

public static void main(String z[])
{

Detail d=new Detail();
d.internal();

d.external();

d.total();

k
¥

Expected Output
Int Marks=30

Ext Marks=70
Total Marks=100

Applying Interfaces

59

e To understand the power of interfaces, let's look at a more practical example. Earlier

we have developed a class called Stack that implemented a simple fixed-size stack.

e However, there are many ways to implement a stack. For example, the stack can be of

a fixed size or it can be "growable."

e The stack can also be held in an array, a linked list, a binary tree, and so on. No matter

how the stack is implemented, the interface to the stack remains the same.

e That is, the methods push() and pop() define the interface to the stack independently

of the details of the implementation.

e Because the interface to a stack is separate from its implementation, it is easy to

define a stack interface, leaving it to each implementation to define the specifics.

Packages and Interfaces

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 60
Example Program

{/ Define an integer stack interface.
interface IntStack |
void push(int item); // store an item
int pop():; // retrieve an item

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack |

rivate int stckl[]:

rivate int tos;

// allocate and initialize stack
FixedStack(int size) |

stck = new int[size];

tos = -1;
1

// Push an item conto the stack
public void push(int item) {
if (tos==stck.length-1) // use length member
System.cut.println("Stack is full.");
else
stck[++tos] = item;

{/ Pop an item from the stack
public int pop() {
if(tos < 0)
System.out.println("Stack underflow."):;
return 0;

else
return stckl[tos—]:

clazs IFTest |
public static wvoid main(String args[]) |
Fixedstack mystackl = new FixedStack(5):
FixedStack mystackZ = new FixedStack(8):

// push some numbers onto the stack
for (int i=0; i<5; i++) mystackl.push(i):

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 61
for({int i=0; 1i<8; i4+) mystackZ.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystackl:");
for (int i=0; i<5; i++)

System.out.println (mystackl.pop());

System.out.println("Stack in mystackZ:");
for (int i=0; i<B8; i++)
System.out.println (mystackZ.pop());

Variables in Interfaces

e The variables in the interfaces are automatically declared as static and final.

e The final modifier ensures the value assigned to the interface variable is a true
constant that cannot be re-assigned by program code.

e It means that their values cannot be changed by the classes that implement the
interface.

e We can use interfaces to import shared constants into multiple classes by simply
declaring an interface that contains variables which are initialized to the desired
values.

e When you include that interface in a class (that is, when you "implement" the
interface),
all of those variable names will be in scope as constants.

Example Program
/l variables in interface

interface Constants

{

int internal=30; // all three variables are final by default
int external=70;

int total=100;

}

class Marks implements Constants
{

void display()

{

/linternal=40; // creates an error becoz “internal " is a final variable
System.out.printIn("Internal Marks="+internal);
System.out.printin("External Marks="+external);
System.out.printIn("Total Marks="+total);

ks
ks

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 62

class Interface2

{

public static void main(String z[])
{

Marks m=new Marks();
m.display();

}

}

Expected Output
Internal Marks=30
External Marks=70
Total Marks=100

Extending Interfaces
e Like classes, interfaces can also be extended by using “extends” keyword.
e When one interface extends another interface, the properties one interface is inherited
to another.
e The class that implements the sub interface should provide definitions to all the
methods of both the interfaces.
Syntax

interface Interfacel

{
k

interface Interface2 extends Interfacel

{
k

Example Program
/lextending interfaces
interface A

{

void show1();
void show2();

¥

interface B extends A

{

void show3(); // Now interface ‘B’ contains 3 abstract methods.

¥

class Test implements B

{
public void show1()

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 63

{

System.out.printin(*show1() method");
}
public void show2()
{
System.out.printin(*show2() method");
}
public void show3()
{
System.out.printin(*show3() method");
}
}
class Interface3
{
public static void main(String z[])
{
Test t=new Test();
t.showl();
t.show2();
t.show3();
}
}

Expected Output
show1() method
show?2() method
show3() method

Exploring Packages

java.io

e Let us now explore java.io package.

e As all programmers learn early on, most programs cannot accomplish their goals
without accessing external data.

e Data is retrieved from an input source.

e The results of a program are sent to an output destination.

e In Java, these sources or destinations are defined very broadly. For example, a
network connection, memory buffer, or disk file can be manipulated by the Java 1/0
classes.

e Although physically different, these devices are all handled by the same abstraction:
the stream. A stream is a logical entity that either produces or consumes information.

e Astream is linked to a physical device by the Java I/O system.

e All streams behave in the same manner, even if the actual physical devices they are
linked to differ.

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 64
The following are some of the classes and interfaces present in
java.io. package
BufferedReader

BufferedWriter
BufferedInputStream
BufferedOutputStream etc.

BufferedReader
BufferedReader improves performance by buffering input.
It has two constructors:

BufferedReader(Reader inputStream)
BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the
second, the size of the buffer is passed in bufSize.

Example Program
import java.io.*;
class Sample

{

public static void main(String z[]) throws IOException
{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));
inta,b,c;

System.out.printin("Enter any two numbers");
a=Integer.parselnt(x.readLine());
b=Integer.parselnt(x.readLine());

c=a+b;

System.out.printIn("Sum="+c);

}

}

Expected Output
Enter any two numbers
20

10

Sum=30

java.util
The java.util package contains classes that deal with collections, events, date and time, and
various helpful utilities.

*hkkkkkk

Packages and Interfaces By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 65

UNIT-V

Exception Handling

An exception is an abnormal condition that arises in a code sequence at run time.

In other words , an exception is a runtime error that indicates that some problem has occurred during program
execution.

In computer languages that do not support exception handling, errors must be checked and handled manually—
typically through the use of error codes, and so on.

Java's exception handling avoids these problems and, in the process, brings run-time error management into the
object-oriented world.

e Java exception handling is managed via five keywords: try, catch, throw, throws, and finally.

e Briefly, here is how they work. Program statements that you want to monitor for exceptions are contained
within a try block.

e |If an exception occurs within the try block, it is thrown.

e Your code can catch this exception (using catch) and handle it in some rational manner.

e System-generated exceptions are automatically thrown by the Java runtime system.

e To manually throw an exception, use the keyword throw.

e Any exception that is thrown out of a method must be specified as such by a throws clause.

e Any code that absolutely must be executed before a method returns is put in a finally block.

General form
try
{

/I block of code to monitor for errors

}
catch (ExceptionTypel exOb)

{
Il exception handler for ExceptionTypel

}
catch (ExceptionType2 exOb)

{
Il exception handler for ExceptionType2

¥
...

finally
{

I/ block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred.

All exception types are subclasses of the built-in class Throwable.

Thus, Throwable is at the top of the exception class hierarchy. Immediately below Throwable are two subclasses
that partition exceptions into two distinct branches.

One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch.
This is also the class that you will subclass to create your own custom exception types.

There is an important subclass of Exception, called RuntimeException.
Exceptions of this type are automatically defined for the programs that you write and include things such as division
by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal
circumstances by your program.

Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the run-time
environment, itself.

Stack overflow is an example of such an error.

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 66

Using try and catch
Although the default exception handler provided by the Java run-time system is useful for debugging, you will
usually want to handle an exception yourself. Doing so provides two benefits.

(1) First, it allows you to fix the error.

(2) Second, it prevents the program from automatically terminating.

To guard against and handle a run-time error, simply enclose the code that you want to monitor inside a try block.
Immediately following the try block, includes a catch clause that specifies the exception type that you wish to catch.
To illustrate how easily this can be done, the following program includes a try block and a catch clause which
processes the ArithmeticException generated by the division-by-zero error:

Example Program
/luse of try and catch

class Progl

{

public static void main(String z[])
{

inta,b,c;

a=10;

b=0;

try

{

c=a/b;
System.out.printin("Result="+c);

ks

catch(ArithmeticException e)

{

System.out.printIn("Denominator should not be zero.");

¥

System.out.printin("After catch block.");

k
k

Expected Output
Denominator should not be zero.
After catch block.

Explanation
= Notice that the call to printIn() inside the try block is never executed. Once an exception is thrown, program
control transfers out of the try block into the catch block.
= Put differently, catch is not "called,” so execution never “returns” to the try block from a catch. Thus, the
line " After catch block." is not displayed.
= Once the catch statement has executed, program control continues with the next line in the program
following the entire try/catch mechanism.

Multiple catch Clauses
¢ Insome cases, more than one exception could be raised by a single piece of code.
e To handle this type of situation, you can specify two or more catch clauses, each catching a
e different type of exception.
e When an exception is thrown, each catch statement is inspected in order, and the first one whose type

matches that of the exception is executed.
Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 67

e After one catch statement executes, the others are bypassed, and execution continues after the try/catch
block.

Example Program
/ltry with multiple catch blocks

class Prog2

{

public static void main(String z[])

{

int a,b,c;

try

{

a=Integer.parselnt(z[0]);
b=Integer.parselnt(z[1]);

c=a/b;
System.out.printin("Result="+c);

}

catch(ArithmeticException e)

{

System.out.printIn("Denominator should not be zero.");

ks

catch(NumberFormatException e)

{

System.out.printin("Enter only numerical values");

ks

catch(ArraylndexOutOfBoundsException e)
{

System.out.printin("Enter only two numbers");

¥

System.out.printin("After catch block.");

¥
k

Expected Output

C:\>java Prog2 20 two
Enter only numerical values
After catch block.

Nested try Statements
e The try statement can be nested. That is, a try statement can be inside the block of another try.
e Each time a try statement is entered, the context of that exception is pushed on the stack.
e If an inner try statement does not have a catch handler for a particular exception, the stack is unwound and
the next try statement's catch handlers are inspected for a match.

Example Program
/Inested try blocks
Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 68

import java.io.*;

class Prog3

{

public static void main(String z[]) throws IOException

{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));
inta,b,c;

try

{

System.out.printin("Enter any two numbers:");
a=Integer.parselnt(x.readLine());

b=Integer.parselnt(x.readLine());

try
{
c=a/b;
System.out.printin("Result="+c);
}
catch(ArithmeticException e)
{
System.out.printin("Denominator should not be zero.");
}
}
catch(NumberFormatException e)
{
System.out.printin("Enter only numerical values");
}
System.out.printIin("After catch block.");
}
}
throw

So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw statement.
The general form of throw is shown here:

throw Throwablelnstance;
Example Program

/luse of throw
import java.io.*;

class Prog4

{

public static void main(String z[]) throws IOException

{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));
int a,b,c;

try

{

System.out.printIn("Enter any two numbers:");
a=Integer.parselnt(x.readLine());

b=Integer.parselnt(x.readLine());

c=a/b;

System.out.printin("Result="+c);

throw new ArithmeticException(); // manually throwing an exception

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 69

¥

catch(ArithmeticException e)

{
System.out.printIn("Denominator should not be zero.");
}

System.out.printin("After catch block.");

}

}

Expected Output

Enter any two numbers:

20

10

Result=2

Denominator should not be zero.
After catch block.

throws

e If a method is capable of causing an exception that it does not handle, it must specify this behavior so that
callers of the method can guard themselves against that exception.

e You do this by including a throws clause in the method's declaration.

e A throws clause lists the types of exceptions that a method might throw.

e This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their
subclasses.

e All other exceptions that a method can throw must be declared in the throws clause. If they are not, a
compile-time error will result.

This is the general form of a method declaration that includes a throws clause:
type method-name(parameter-list) throws exception-list

{
// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Example Program

/luse of throws
class Prog5
{
static int res;
static void display(int x,int y) throws NoSuchMethodException
{
res=xly;
System.out.printIn("Result="+res);

¥

public static void main(String z[])

{

try
{
display(20,0);
}

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 70

catch(NoSuchMethodException e)

{
System.out.printIn("Not Zero!");
}

}

}

finally

e finally creates a block of code that will be executed after a try/catch block has completed and before the
code following the try/catch block.

e The finally block will execute whether or not an exception is thrown.

e If an exception is thrown, the finally block will execute even if no catch statement matches the exception.

e Any time a method is about to return to the caller from inside a try/catch block, via an uncaught exception or
an explicit return statement, the finally clause is also executed just before the method returns.

e This can be useful for closing file handles and freeing up any other resources that might have been allocated
at the beginning of a method with the intent of disposing of them before returning. The finally clause is
optional.

e However, each try statement requires at least one catch or a finally clause.

Example Program
/I use of finally

class Progb
{
static int res;
static void div(int x,int y)
{
try
{
res=xly;
System.out.printin("Result="+res);

¥

finally /ffinally block is executed first than catch block

{
System.out.printIn("Finally block!");
¥
¥

public static void main(String z[])

{

try

{
div(20,0);
}

catch(ArithmeticException e)

{
System.out.printIn(*Not Zero!");
}
}

}
Expected Output

Finally block!
Not Zero!

Java's Built-in Exceptions

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 71

Inside the standard package java.lang, Java defines several exception classes. A few have been used by the
preceding examples.

Hence Exceptions are generally classified into the following two categories.

(i)Unchecked exceptions

(if)Checked exceptions.

(i) Unchecked exceptions

e The most general of these exceptions are subclasses of the standard type RuntimeException. Since

java.lang is implicitly imported into all Java programs, most exceptions derived from RuntimeException
are automatically available.

e Furthermore, they need not be included in any method's throws list.

¢ In the language of Java, these are called unchecked exceptions because the compiler does not check to see if a
method handles or throws these exceptions.

e The unchecked exceptions defined in java.lang are listed in Table 10-1.

(i1) Checked exceptions
e Table 10-2 lists those exceptions defined by java.lang that must be included in a method's throws list if that
method can generate one of these exceptions and does not handle it itself.
e These are called checked exceptions.

Table 10-1. Java's Unchecked RuntimeException Subclasses

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

Exception

Meaning

ArithmeticException

Arithmetic error, such as divide-by-zero.

ArraylndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException

ClassCastException
lllegalArgumentException

lllegalMonitorStateException

lllegalStateException

llegalThreadStateException

IndexOutOfBoundsException

NegativeArraySizeException

Assignment to an array element of an incompatible
type.

Invalid cast.
lllegal argument used to invoke a method.

lllegal monitor operation, such as waiting on an
unlocked thread.

Environment or application is in incorrect state.

Requested operation not compatible with current
thread state.

Some type of index is out-of-bounds.

Array created with a negative size.

72

MNullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

Table 10-2. Java'S Checked Exceptions Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.

Attempt to clone an object that does not implement
the Cloneable interface.

CloneNotSupportedException

lllegalAccessException Access to a class is denied.

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

InstantiationException

InterruptedException

NoSuchFieldException

MNosuchMethodException

73

Attempt to create an object of an abstract class or
interface.

One thread has been interrupted by another thread.
A requested field does not exist.

A requested method does not exist.

Creating Your Own Exception Subclasses

e Although Java's built-in exceptions handle most common errors, you will probably want to create your own
exception types to handle situations specific to your applications.

e This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of Throwable).

e Your subclasses don't need to actually implement anything—it is their existence in the type system that
allows you to use them as exceptions.

e The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable.

e Thus, all exceptions, including those that you create, have the methods defined by Throwable available to

them.

Example Program
class Retire extends Exception

{

int age;
Retire(int age)
{

this.age=age;

}

public String toString()
{

return "Age should be <=58 years "+age+" is wrong age";

k
k

class UserExcep

{

public static void main(String z[])

{

int age=Integer.parselnt(z[0]);

int sal;

try

{

if(age>58) throw new Retire(age);
if(age<=30)

sal=5000;

else if(age<=40)
sal=10000;

else
sal=15000;

Exception Handling and Multithreading

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 74

System.out.printin("Salary:"+sal);

¥

catch(Retire e)

{

System.out.printin(e);

k
k

}
Expected Output

C:\>java Sample 59
Age should be <=58 years 59 is wrong age
Multithreaded Programming

Unlike most other computer languages, Java provides built-in support for multithreaded programming.
A multithreaded program contains two or more parts that can run concurrently.
Each part of such a program is called a thread, and each thread defines a separate path of execution.
Thus, multithreading is a specialized form of multitasking.
There are two distinct types of multitasking process-based and thread-based.
It is important to understand the difference between the two.

Differences between process based and thread based multitasking

Process based multitasking

e For most readers, process-based multitasking is the more familiar form.

e A process is, in essence, a program that is executing.

e Thus, process-based multitasking is the feature that allows your computer to run two or more programs
concurrently.

e For example, process-based multitasking enables you to run the Java compiler at the same time that you are
using a text editor.

e In process-based multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.

e Processes are heavyweight tasks that require their own separate address spaces.

e Interprocess communication is expensive and limited.

e Context switching from one process to another is also costly.

Thread based multitasking

e In athread-based multitasking environment, the thread is the smallest unit of dispatchable code.

e This means that a single program can perform two or more tasks simultaneously. For instance, a text editor
can format text at the same time that it is printing, as long as these two actions are being performed by two
separate threads.

e Thus, process-based multitasking deals with the "big picture,” and thread-based multitasking handles the
details.

e Multitasking threads require less overhead than multitasking processes.

e Threads, on the other hand, are lightweight.

e They share the same address space and cooperatively share the same heavyweight process.

¢ Interthread communication is inexpensive, and context switching from one thread to the next is low cost.

While Java programs make use of process-based multitasking environments,

process-based multitasking is not under the control of Java.
However, multithreaded multitasking is under the control of java.

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 75

Thread life cycle:
During its life cycle, every thread undergoes the following five states.

(1) Born state state
(2) Runnable state
(3) Running state
(4) Blocked state
(5) Dead state

Let us now discuss each of them briefly.

(1) Born State:
A thread is said to be in born state when a new thread object is created.
During this state, a thread doesn’t perform any work.

(2) Runnable State:
A thread is said to be in runnable state if it is ready for execution and is waiting for the availability of the
processor in a queue.
All the threads waiting in the queue have their priorities.
The thread with the highest priority will go to the running state first.

(3) Running State:
A thread is said to be in running state if it is under the execution of the processor.

(4) Blocked State:
A thread is said to be in blocked state, if it is avoided from entering from runnable to running state using
suspend(), sleep() and wait() methods.

(5) Dead State:
It is the final state in the life cycle of the thread.
A thread may die in the following two ways.
(i) Natural death: After completion of execution, the thread generally dies.
(if) Premature death: A thread can be killed before the completion of its execution.

The Main Thread
When a Java program starts up, one thread begins running immediately.

This is usually called the main thread of your program, because it is the one that is executed when your program
begins.

The main thread is important for two reasons:

« It is the thread from which other "child" threads will be created.
* [t must be the last thread to finish execution.

When the main thread stops, your program terminates.

Example Program
class Examplel

{

public static void main(String z[])

{

System.out.printIn("Main thread created.");
Thread t=Thread.currentThread();
System.out.printin(t);

t.setName("New Thread");
System.out.printin("After name changed:"+t);

¥

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 76

¥

Expected Output
Main thread created.

Thread[main,5,main]
After name changed:Thread[New Thread,5,main]

Creating a Thread
Threads can be created in one of the following two ways.
(1) By extending Thread class
(2) By implementing Runnable interface
Let us now discuss these two methods briefly.

(1) Extending Thread

e The first way to create a thread is to create a new class that extends Thread, and then to create an instance of
that class.

e The extending class must override the run(') method, which is the entry point for the new thread.
e It must also call start() to begin execution of the new thread.

Example Program
//By extending "Thread" class

class User extends Thread
{
String name;
User(String s)
{
super(s);
System.out.printin("Child thread created!");
name=s;
start();
}

public void run()

{

try

{

for(int i=101;i<=105;i++)

{
System.out.printin(name+":"+i);
sleep(500);

}

}

catch(InterruptedException e)

{
System.out.printIn("Child thread interrupted!");

ks
ks
¥

class Threadl

{

public static void main(String z[])

{

System.out.printIn(*Main thread created!");

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

User u=new User("Child1");

try
{

for(int i=1;i<=5;i++)

{
System.out.printIn(*Main:"+i);
Thread.sleep(1000);

k
k

catch(InterruptedException e)

{
System.out.printIn(*Main thread Interrupted!");
}
}

}
Expected Output

Main thread created!
Child thread created!
Main:1

Child1:101
Child1:102

Main:2

Child1:103
Child1:104

Main:3

Child1:105

Main:4

Main:5

(2) Implementing Runnable

77

e The easiest way to create a thread is to create a class that implements the Runnable interface.

e Runnable abstracts a unit of executable code.
e You can construct a thread on any object that implements Runnable.

e To implement Runnable, a class need only implement a single method called run(), which is declared like

this:

public void run()

e Inside run(), you will define the code that constitutes the new thread.

e It is important to understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can.

e The only difference is that run() establishes the entry point for another, concurrent thread of execution

within your program.

Example Program
//By implementing "Runnable” interface
class User implements Runnable
{
Thread t;
String name;
User(String s)
{
t=new Thread(this,s);

Exception Handling and Multithreading

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

System.out.printin("Child thread created!");

name=s;
t.start();
}

public void run()

{

try

{

for(int i=101;i<=105;i++)

{
System.out.printin(name+":"+i);
t.sleep(500);

}

}

catch(InterruptedException e)

{

System.out.printIn("Child thread interrupted!");

k
¥
¥

class Thread2
{

public static void main(String z[])

{

System.out.printIn("Main thread created!");
User u=new User("Child1");

try

{

for(int i=1;i<=5;i++)

{
System.out.printIn("Main:"+i);
Thread.sleep(1000);

k
¥

catch(InterruptedException e)

{

System.out.printIn("Main thread Interrupted!");

k
k

}
Expected Output

Main thread created!
Child thread created!
Main:1

Child1:101
Child1:102

Main:2

Child1:103
Child1:104

Main:3

Exception Handling and Multithreading

78

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

Child1:105
Main:4
Main:5

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.

79

However, your program can spawn as many threads as it needs. For example, the following program creates three

child threads:

Example Program
/[Creating multiple threads

class User extends Thread
{
String name;

User(String s)

{

super(s);

System.out.printIn("Child thread created!");

name=s;
start();

¥

public void run()

{

try

{

for(int i=101;i<=105;i++)
{

System.out.printin(name+":"+i);

sleep(1000);

¥
k

catch(InterruptedException e)

{

System.out.printIn("Child thread interrupted!");

¥
¥
¥

class Thread3

{

public static void main(String z[])
{

User ul=new User("Child1");
User u2=new User("Child2");
User u3=new User("Child3");

¥
k

Example Program
Child thread created!
Child thread created!
Child1:101

Child thread created!
Child2:101
Child3:101
Child1:102

Exception Handling and Multithreading

By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 80

Child3:102
Child2:102
Child3:103
Child1:103
Child2:103
Child3:104
Child1:104
Child2:104
Child3:105
Child2:105
Child1:105

Thread Priorities
e Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run.
e Intheory, higher-priority threads get more CPU time than lower-priority threads and threads of equal priority
should get equal access to the CPU.
e To setathread's priority, use the setPriority() method, which is a member of Thread.

Its general form is given below
final void setPriority(int level)

e Here, level specifies the new priority setting for the calling thread.

e The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these
values are 1 and 10, respectively.

e To return a thread to default priority, specify NORM_PRIORITY, which is currently 5.

e These priorities are defined as final variables within Thread.

Thread Synchronization

e When two or more threads need access to a shared resource, they need some way to
ensure that the resource will be used by only one thread at a time.

e The process by which this is achieved is called synchronization.

e Key to synchronization is the concept of the monitor (also called a semaphore).

e A monitor is an object that is used as a mutually exclusive lock, or mutex.

e Only one thread can own a monitor at a given time.

e When a thread acquires a lock, it is said to have entered the monitor.

e All other threads attempting to enter the locked monitor will be suspended until the first thread exits the
monitor.

e These other threads are said to be waiting for the monitor.

e A thread that owns a monitor can reenter the same monitor if it so desires.

Using Synchronized Methods
e Synchronization is easy in Java, because all objects have their own implicit monitor associated with them.
e To enter an object's monitor, just call a method that has been modified with the synchronized keyword.
e While a thread is inside a synchronized method, all other threads that try to call it (or any other synchronized
method) on the same instance have to wait.
e To exit the monitor and relinquish control of the object to the next waiting thread, the owner of the monitor
simply returns from the synchronized method.

Example Program
/IProgram on thread synchronization
class Message

{

synchronized void show(String s)

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way

{
System.out.print("["+s);
try
{
Thread.sleep(1000);

}
catch(InterruptedException e)
{
}
System.out.printin("]");
}
}
class User implements Runnable
{
Thread t;
String s;
Message m;
User(Message m,String s)
{
t=new Thread(this);
this.m=m;
this.s=s;
t.start();
}

public void run()

{
m.show(s);
}

}

class Thread4
{

public static void main(String z[])

{

Message m=new Message();

User ul=new User(m,"Hello");

User u2=new User(m,"Synchronized");
User u3=new User(m,"World");

¥

}
Expected Output

[Hello]
[Synchronized]
[World]

Exception Handling and Multithreading

*hkkkkkk

81

By: H. Ateeq Ahmed

