

By

H. Ateeq Ahmed, M.Tech.,

Assistant Professor of CSE,

Kurnool.

Specially Prepared for Engineering Students

As per JNTUA R09 CSE Syllabus

ACKNOWLEDGEMENT

First I thank Almighty God for giving me the knowledge to learn and teach

various students.

It’s my privilege to thanks my parents as without their right guidance and

support, these book will be a dream for me.

Finally, I thank my colleagues and friends for helping me during tough

period of time.

“Interest & Focus are two KEYWORDS of a perfect programmer”

“The goal of this book is to find the next JAVA Programmer in

YOU in a magical way…”

H. Ateeq Ahmed, M.Tech.,

Mobile no: 9948378994,

E-mail ID: ateeqh25@gmail.com.

mailto:ateeqh25@gmail.com

Contents

Topics Page No.

1. Java Basics

1 - 37

History of java, Java Buzzwords, Data types,

variables, scope and life time of variables,

arrays, operators, expressions, control

statements, type conversions and casting,

simple java program, classes and objects,

concepts of classes, objects, constructors,

methods, introducing access control, this

keyword, garbage collection, overloading

methods and constructors, parameter passing,

recursion, string handling.

2. Inheritance

38 - 52

Hierarchical abstractions, base class object,

subclass, subtype, substitutability, forms of

inheritance, specialization, specification,

construction, extension, limitation,

combination, benefits of inheritance, costs of

inheritance, members access rules, super uses,

using final with inheritance, polymorphism –

method overriding, abstract classes.

3. Packages and Interfaces

53 - 64

Defining, creating and accessing a package,

Understanding CLASSPATH, importing

packages, differences between classes and

interfaces, defining an interface, implementing

interface, applying interfaces, variables in

interface and extending interfaces, Exploring

packages – java.io, java.util.

4. Exception Handling and Multithreading

65 - 81

Concepts of Exception handling, benefits of

exception handling, Termination or resumptive

models, exception hierarchy, usage of try,

catch, throw, throws and finally, java built in

exceptions, creating own exception subclass,

differences between multithreading and

multitasking, thread life cycle, creating threads,

synchronizing threads.

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

1

UNIT-II

History of Java (Genesis of Java):

Creation of Java:

 in 1995.

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

2

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

3

 Let us Examine each of them briefly.

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

4

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

5

Data Types:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

6

Let us look at each type of Integers briefly.

To 127.

Eg:

Eg:

 Short b,c;

Eg:

 int b,c;

Eg:

 long b,c;

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

7

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

8
Example Program

Example Program

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

9
Examples:

Example Program

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

10

Example Program

// Demonstrate One dimensional array

Class Array1

{

Public static void main(String arg[])

{

int month_days[]=new int[3];

month_days[0]=31;

month_days[1]=28;

month_days[2]=31;

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

11

System.out.println(“January has “+month_days[0]+” days.”);

}

}

Expected output:

January has 31 days.

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

12

Procedure for Compiling and Executing a Java program

Step-1

Java Compilation:

C:\Program Files\Java\jdk1.5.0_05\bin>javac String1.java

Step-2

Java Execution:

C:\Program Files\Java\jdk1.5.0_05\bin>java String1

Output:

Hi Every one! This is Ateeq Ahmed, Asst. Professor of CSE Dept. & I am dealing

you Object Oriented Programming...

Operators:
Java

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

13

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

14

Control Statements:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

15
Example Program

class Mytest

{

public static void main(String z[])

{

int age=20;

if(age>=18)

System.out.println("Eligible for voting!");

else

System.out.println("Not Eligible");

}

}

Expected Output

Eligible for voting!

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

16

Example Program

class Switch1

{

public static void main(String z[])

{

int i=2;

 switch(i)

 {

 case 1:

 System.out.println("One");

 break;

 case 2:

 System.out.println("Two");

 break;

 default:

 System.out.println("Invalid Choice!");

 }

}

}

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

17

Example Program

class While1

{

public static void main(String z[])

{

int i=1;

 while(i<=5)

 {

 System.out.println(i);

 i++;

 }

}

}

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

18
Example Program

class Dowhile

{

public static void main(String z[])

{

int i=1;

 do

 {

 System.out.println(i);

 i++;

 } while(i<=5);

}

}

Example Program

class For1

{

public static void main(String z[])

{

int i;

 for(i=1;i<=5;i++)

 {

 System.out.println(i);

 }

}

}

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

19

Example Program

class For2

{

public static void main(String z[])

{

 for(int i=1;i<=5;i++) // i is declared inside for

 {

 System.out.println(i);

 }

}

}

Example Program

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

20
Example Program

class Break1

{

public static void main(String z[])

{

int i;

 for(i=1;i<=5;i++)

 {

 if(i==3)

 break;

 System.out.println(i);

 }

 System.out.println("Loop Breaked!");

}

}

Expected Output:

1

2

Loop Breaked!

Example Program

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

21

Expected Output:

Example Program

class Cont1

{

public static void main(String z[])

{

int i;

 for(i=1;i<=5;i++)

 {

 if(i==3)

 continue;

 System.out.println(i);

 }

}

}

Expected Output:

1

2

4

5

Example Program:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

22

Expected Output:

Example:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

23
Example Program

Expected Output:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

24

Example Program

Expected Output:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

25

Example Programs

//Program on methods

class Box

{

double width,depth,height,vol;

 void volume()

 {

 vol=width*depth*height;

 }

 void display()

 {

 System.out.println("Volume is "+vol);

 }

}

class Method1

{

public static void main(String z[])

{

Box b=new Box();

b.width=2;

b.depth=2;

b.height=3;

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

26

b.volume();

b.display();

}

}

Expected Output:

Volume is 12.0

//Program on Paramaterised method

class Box

{

double width,depth,height,vol;

 void dimensions(int w,int d,int h)

 {

 width=w;

 depth=d;

 height=h;

 }

 void volume()

 {

 vol=width*depth*height;

 }

 void display()

 {

 System.out.println("Volume is "+vol);

 }

}

class Method2

{

public static void main(String z[])

{

Box b=new Box();

b.dimensions(2,2,2);

b.volume();

b.display();

}

}

Expected Output:

Volume is 8.0

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

27

Example Program

//Program on Constructor

class Box

{

double width,depth,height,vol;

 Box()

 {

 width=3;

 depth=3;

 height=3;

 }

 void volume()

 {

 vol=width*depth*height;

 }

 void display()

 {

 System.out.println("Volume is "+vol);

 }

}

class Construct1

{

public static void main(String z[])

{

Box b=new Box();

b.volume();

b.display();

}

}

Expected Output:

Volume is 27.0

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

28
//Program on Paramaterised Constructor

class Box

{

double width,depth,height,vol;

 Box(int w,int d,int h)

 {

 width=w;

 depth=d;

 height=h;

 }

 void volume()

 {

 vol=width*depth*height;

 }

 void display()

 {

 System.out.println("Volume is "+vol);

 }

}

class Construct2

{

public static void main(String z[])

{

Box b=new Box(4,4,4);

b.volume();

b.display();

}

}

Example:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

29

Example:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

30

Example Program

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

31

Expected Output:

Example Program

//Program on constructor overloading

class Box

{

double w,d,h,vol;

 Box()

 {

 w=2;

 d=2;

 h=2;

 }

 Box(int w,int d,int h)

 {

 this.w=w;

 this.d=d;

 this.h=h;

 }

 void volume()

 {

 vol=w*d*h;

 }

 void display()

 {

 System.out.println("Volume="+vol);

 }

}

class Constover

{

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

32
public static void main(String z[])

{

Box b1=new Box();

Box b2=new Box(3,3,3);

b1.volume();

b1.display();

b2.volume();

b2.display();

}

}

Expected Output:

Volume=8.0

Volume=27.0

Parameters Passing:

Example Program

//Call by value

class Call

{

 void change(int x,int y)

 {

 x++;

 y++;

 System.out.println("Changed values are "+x+" "+y);

 }

}

class Callvalue

{

public static void main(String z[])

{

Call ob=new Call();

int a=10,b=20;

System.out.println("Values before call are "+a+" "+b);

ob.change(a,b);

System.out.println("Values after call are "+a+" "+b);

}

}

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

33
Expected Output:

Values before call are 10 20

Changed values are 11 21

Values after call are 10 20

Example Program

//Call by reference

class Call

{

int a,b;

 Call(int x,int y)

 {

 a=x;

 b=y;

 }

 void change(Call ob)

 {

 ob.a++;

 ob.b++;

 System.out.println("Changed values are "+ob.a+" "+ob.b);

 }

}

class Callreference

{

public static void main(String z[])

{

Call ob=new Call(10,20);

System.out.println("Values before call are "+ob.a+" "+ob.b);

ob.change(ob);

System.out.println("Values after call are "+ob.a+" "+ob.b);

}

}

Expected Output:

Values before call are 10 20

Changed values are 11 21

Values after call are 11 21

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

34

Example Program

Expected Output:

String Handling:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

35

Example Program

Expected Output:

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

36

Example Program

//Concatenating long string using '+'

class String1

{

public static void main(String z[])

{

String str="Hi Every one!"+

 " This is Ateeq Ahmed,"+

 " Asst. Professor of CSE Dept."+

 " & I am dealing you Object Oriented Programming...";

System.out.println(str);

}

}

Expected Output:

Hi Every one! This is Ateeq Ahmed, Asst. Professor of CSE Dept. & I am dealing you Object Oriented

Programming...

Learning JAVA in a Magical Way

Java Basics By H. Ateeq Ahmed

37

Compilation & Execution of a Java program

 In the Java programming language, all source code is first written in plain text files ending with

the .java extension.

 Those source files are then compiled into .class files by the javac compiler.

 A .class file does not contain code that is native to your processor; it instead contains bytecode —

the machine language of the Java Virtual Machine
1
 (Java VM).

 The java launcher tool then runs your application with an instance of the Java Virtual Machine.

 Because the Java VM is available on many different operating systems, the same .class files are

capable of running on Microsoft Windows, the Solaris™ Operating System (Solaris OS), Linux,

or Mac OS.

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html#FOOT

Learning JAVA in a Magical Way 38

Inheritance By: H. Ateeq Ahmed

UNIT-III

 Abstraction

 An essential element of object-oriented programming is abstraction.

 Humans manage complexity through abstraction. For example, people do not think of a

car as a set of tens of thousands of individual parts.

 They think of it as a well-defined object with its own unique behavior.

 This abstraction allows people to use a car to drive to the grocery store without being

overwhelmed by the complexity of the parts that form the car.

 They can ignore the details of how the engine, transmission, and braking systems work.

Instead they are free to utilize the object as a whole.

Hierarchical Abstractions

 A powerful way to manage abstraction is through the use of hierarchical classifications.

 This allows you to layer the semantics of complex systems, breaking them into more

manageable pieces.

 From the outside, the car is a single object. Once inside, you see that the car consists of

several subsystems: steering, brakes, sound system, seat belts, heating, cellular phone,

and so on. In turn, each of these subsystems is made up of more specialized units.

 The point is that you manage the complexity of the car (or any other complex system)

through the use of hierarchical abstractions.

 Hierarchical abstractions of complex systems can also be applied to computer programs.

 The data from a traditional process-oriented program can be transformed by abstraction

into its component objects.

 A sequence of process steps can become a collection of messages between these objects.

Thus, each of these objects describes its own unique behavior.

 You can treat these objects as concrete entities that respond to messages telling them to

do something. This is the essence of object-oriented programming.

 Object-oriented concepts form the heart of Java just as they form the basis for human

understanding.

 It is important that you understand how these concepts translate into programs.

 Thus object-oriented programming is a powerful and

natural paradigm for creating programs that survive the inevitable changes accompanying the

life cycle of any major software project.

Learning JAVA in a Magical Way 39

Inheritance By: H. Ateeq Ahmed

Subclass and Subtype

It is therefore useful to define two separate concepts:

 To say that A is a subclass of B merely asserts that A is formed using inheritance.

 To say that A is a subtype of B asserts that A preserves the meaning of all the operations

in B.

It is possible to form subclasses that are not subtypes; and form subtypes that are not subclasses.

The term subtype is used to refer to a subclass relationship in which the principle of substitution

is maintained to distinguish such forms from the general subclass relationship.

Substitutability

“The principle of substitution says that if we have two classes, A and B, such that class B is a

subclass of class A, it should be possible to substitute instances of class B for instances of class A

in any situation with no observable effect.”

All object oriented languages will support the principle of substitution.

Most support this concept this concept in a straightforward way i.e. the parent class simple holds

a value from the child class.

Inheritance

“Inheritance is the process by which an object of one class known as subclass acquires the

properties of object of another class known as superclass.”

Types of Inheritance

The following are the various types of inheritance

 Single level Inheritance

 Multilevel Inheritance

 Hierarchical Inheritance

 Multiple Inheritance

 Hybrid Inheritance

Single level Inheritance

The process of deriving a single class known as subclass from a single class known as superclass

in known as single level inheritance.

 superclass

 subclass

A

B

Learning JAVA in a Magical Way 40

Inheritance By: H. Ateeq Ahmed

Multilevel Inheritance

The process of deriving a new subclass from the already existing subclass is known as Multilevel

inheritance.

In this inheritance, a super class will have many levels of subclasses.

Hierarchical Inheritance

The process of deriving multiple subclasses from the same superclass is known as Hierarchical

inheritance.

Multiple Inheritance

The process of deriving a single subclass from multiple superclasses is known as Multiple

Inheritance.

Java doesn’t support multiple inheritance through classes but it supports this concept by using

interfaces.

Hybrid Inheritance

It is a combination of Hierarchical and Multiple inheritance.

A

B

C

A

B C

A B

C

Learning JAVA in a Magical Way 41

Inheritance By: H. Ateeq Ahmed

Forms of Inheritance

Inheritance is used in a number of ways for different purposes.

Many of these types of inheritance are given their own special names.

 The following are some of these specialized forms of inheritance.

 Specialization

 Specification

 Construction

 Extension

 Limitation

 Combination

Let us discuss each of them briefly.

Subclassing for specialization

 It is the most common use of inheritance.

 In subclassing for specialization, the new class is a specialized form of the parent class or

superclass but satisfies all the specifications of the parent class.

 Hence subclassing for specialization is the most common and popular form of inheritance

in which a subclass is derived from the parent class.

Subclassing for specification

 Another frequent use of inheritance is to guarantee that classes maintain a certain

common interface i.e. they implement same methods.

 This is a special case of subclassing for specialization, except that the subclasses are not

refinements of an existing type but rather realization of an incomplete abstract class.

 In such cases, the parent class is sometimes known as an abstract class.

Subclassing for construction

 A class can inherit almost all of its desired functionality from a parent class.

 If the parent class is used as a source for behavior, but the child class has no is-a

relationship to the parent, then we say the child class is using inheritance for construction.

 It is generally not a good idea to use subclassing for construction, since it can break the

principle of substitutability, but nevertheless sometimes used practically.

Subclassing for extension

 If a child class generalizes or extends the parent class by providing more functionality,

but does not override any method. It is called inheritance for generalization whereas

subclassing for extension adds totally new abilities.

Learning JAVA in a Magical Way 42

Inheritance By: H. Ateeq Ahmed

 Extension only adds new methods to those of the parent class.

 An example of subclassing for extension is a StringSet class that inherits from a generic

Set class, but is specialized for holding string values.

 The child class doesn't change anything inherited from the parent, it simply adds new

features.

Subclassing for limitation

 Subclassing for limitation occurs when the behavior of the subclass is smaller or more

restrictive than the behavior of the parent class.

 If a child class overrides a method inherited from the parent in a way that makes it

unusable (for example, issues an error message), then we call it as inheritance for

limitation.

 For example, you have an existing List data type that allows items to be inserted at either

end, and you override methods allowing insertion at one end in order to create a Stack.

 Generally not a good idea, since it breaks the idea of substitution. But again, it is

sometimes found in practice.

Subclassing for combination

 A common situation is a subclass that represents a combination of features from two or

more parent classes.

 A teaching assistant, for example, may have characteristics of both a teacher and a

student and can therefore logically behave as both.

 The ability of a class to inherit from two or more parent classes is known as Multiple

Inheritance.

Benefits of Inheritance

 The following are some of the important benefits of the

proper use of inheritance.

 Software reusability

 Code sharing

 Consistency of interface

 Software components

 Rapid prototyping

 Information hiding

Let us examine each of them briefly.

Software Reusability

When behavior is inherited from another class, the code that provides the behavior does not have

to be rewritten in the subclasses.

Learning JAVA in a Magical Way 43

Inheritance By: H. Ateeq Ahmed

Code Sharing

 Code Sharing can occur on several levels with object oriented techniques.

 At one level, many users can use the same classes.

 Another example is a single parent class which can be shared by many number of

subclasses.

 In simple terms, many users can share the same part of code which avoids rewriting of

code.

Consistency of Interface

It states that, when two or more classes inherit from the same superclass, it is assured that the

behavior they inherit will be the same in all cases.

Software Components

Inheritance provides programmers with the ability to construct reusable software components.

The goal is to develop new applications with little actual coding

Rapid Prototyping

 When a software system is developed by using large number of reusable components

then the development can be done very fast or rapid.

 Thus software systems can be generated more quickly and easily.

Information Hiding

 A programmer who uses a software component needs only to understand the nature of the

component and its interface.

 It is not necessary for the programmer to have detailed information such as the techniques

used to implement the component.

Costs of Inheritance

Although the benefits of inheritance in object oriented programming are great, but inheritance

also have some disadvantages when it is not used in a correct way.

 Execution Speed

 Program Size

 Message Passing Overhead

 Program Complexity.

Learning JAVA in a Magical Way 44

Inheritance By: H. Ateeq Ahmed

Member access rules

Refer Unit-II Topic: Access Control

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private.

Example Program

class A

{

private int a=10;

public int b=20;

protected int c=30;

int d=40; // d is a no modifier variable

}

class B extends A

{

 void display()

 {

 System.out.println("a="+a); // generates an error becoz a is declared as private

 System.out.println("b="+b);

 System.out.println("c="+c);

 System.out.println("d="+d);

 }

}

class Access

{

public static void main(String z[])

{

B ob=new B();

ob.display();

}

}

Super keyword

“A super is a keyword in java used to refer to the super class.”

Whenever a subclass needs to refer to its immediate superclass, it can do so by use of

the keyword super.

Learning JAVA in a Magical Way 45

Inheritance By: H. Ateeq Ahmed

The keyword super has two uses

 The first calls the superclass constructor.

 The second is used to access a member of the superclass that has been hidden by a

member of a subclass.

Using super to call superclass constructor

A subclass can call a constructor method defined by its superclass by use of the following

form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass.

super() must always be the first statement executed inside a subclass constructor.

Example Program

//to call super class constructor

class A

{

 A(int x)

 {

 x++;

 System.out.println("x="+x);

 }

}

class B extends A

{

 B(int y)

 {

 super(y);

 System.out.println("y="+y);

 }

}

class Super1

{

public static void main(String z[])

{

B b=new B(10);

}

}

Expected Output

x=11

y=10

Learning JAVA in a Magical Way 46

Inheritance By: H. Ateeq Ahmed

Using super to access members of a superclass

This second form of super is most applicable to situations in which member names of a

subclass hide members by the same name in the superclass.

Syntax

super.member

Here, member can be either a method or an instance variable.

Example Program1

//Using Super keyword to access variables of a super class

class A

{

int a=10;

 void displayA()

 {

 System.out.println("a in class A="+a);

 }

}

class B extends A

{

int a=20;

 void displayB()

 {

 System.out.println("a in class B="+super.a);

 }

}

class Super2

{

public static void main(String z[])

{

B b=new B();

b.displayA();

b.displayB();

}

}

Expected Output

a in class A=10

a in class B=10

Learning JAVA in a Magical Way 47

Inheritance By: H. Ateeq Ahmed

Example Program2

//Using Super to call overridden method of a super class

class A

{

 void show()

 {

 System.out.println("show() in class A");

 }

}

class B extends A

{

 void show()

 {

 super.show(); //invokes super class method show()

 System.out.println("show() in class B");

 }

}

class Super3

{

public static void main(String z[])

{

B b=new B();

b.show();

}

}

Expected Output

show() in class A

show() in class B

final keyword

 The keyword final has three uses.

 First, it can be used to create the equivalent of a named constant.

 The other two uses of final apply to inheritance.

Using final with variables

 A variable can be declared as final.

 Doing so prevents its contents from being modified.

 This means that you must initialize a final variable when it is declared. (In this usage,

final is similar to const in C/C++.)

Learning JAVA in a Magical Way 48

Inheritance By: H. Ateeq Ahmed

Example

final int a=10;

Using final with Inheritance

(a) Using final to prevent Overriding

 While method overriding is one of Java's most powerful features, there will be times

when you will want to prevent it from occurring.

 To disallow a method from being overridden, specify final as a modifier at the start of its

declaration.

 Methods declared as final cannot be overridden.

Example Program

class A

{

final void show()

{

System.out.println(“show() in class A is final”);

}

}

class B extends A

{

void show() // creates ERROR: can’t override final method

{

System.out.println(“show() in class B”);

}

}

class Final1

{

public static void main(String z[])

{

B ob=new B();

ob.show();

}

}

(b)Using final to prevent Inheritance

 Sometimes you will want to prevent a class from being inherited. To do this, precede the

class declaration with final.

 Declaring a class as final implicitly declares all of its methods as final, too.

 As you might expect, it is illegal to declare a class as both abstract and final since an

abstract class is incomplete by itself and relies upon its subclasses to provide complete

implementations.

Learning JAVA in a Magical Way 49

Inheritance By: H. Ateeq Ahmed

Example

final class A

{

//…

}

class B extends A // ERROR: can’t inherit a final class

{

//…

}

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass is said to override the method in the

superclass.

When an overridden method is called from within a subclass, it will always refer to the version

of that method defined by the subclass.

The version of the method defined by the superclass will be hidden.

Example Program

class A

{

void show()

{

System.out.println(“show() in class A”);

}

}

class B extends A

{

void show() // subclass method overrides the superclass method “show()”

{

System.out.println(“show() in class B”);

}

}

class Overriding

{

public static void main(String z[])

{

B ob=new B();

ob.show();

}

}

Expected Output

show() in class B

Learning JAVA in a Magical Way 50

Inheritance By: H. Ateeq Ahmed

Polymorphism through Method Overriding

Dynamic Method Dispatch (Runtime Polymorphism)

 Method overriding forms the basis for one of Java's most powerful concepts: dynamic

method dispatch.

 Dynamic method dispatch is the mechanism by which a call to an overridden function is

resolved at run time, rather than compile time.

 Dynamic method dispatch is important because this is how Java implements run-time

polymorphism.

 Let's begin by restating an important principle: a superclass reference variable can refer

to a subclass object.

 Java uses this fact to resolve calls to overridden methods at run time.

 Here is how. When an overridden method is called through a superclass reference, Java

determines which version of that method to execute based upon the type of the object

being referred to at the time the call occurs.

 Thus, this determination is made at run time.

Example Program

//Runtime Polymorphism or Dynamic method dispatch

class A

{

 void show()

 {

 System.out.println("show() in class A");

 }

}

class B extends A

{

 void show()

 {

 System.out.println("show() in class B");

 }

}

class C extends A

{

 void show()

 {

 System.out.println("show() in class C");

 }

}

Learning JAVA in a Magical Way 51

Inheritance By: H. Ateeq Ahmed

class Runtime

{

public static void main(String z[])

{

A a=new A();

B b=new B();

C c=new C();

A ref;

ref=a;

ref.show();

ref=b;

ref.show();

ref=c;

ref.show();

}

}

Expected Output

show() in class A

show() in class B

show() in class C

Abstract class

 Sometimes we want to create a superclass that only defines a generalized form that will

be shared by all of its subclasses, leaving it to each subclass to fill in the details.

 Such a class determines the nature of the methods that the subclasses must implement.

 In java, the class that contains abstract methods is known as “abstract class”

 Abstract class can also contains concrete methods like a normal class.

 Variables can also be declared in the abstract class.

 Abstract methods are incomplete methods and hence abstract class also becomes

incomplete class.

 Objects cannot be created to an abstract class.

 Thus the class that extends the abstract class should provide definition to all the methods

declared in the abstract class.

 To declare an abstract method, use this general form

 abstract type name(parameter-list);

Example

abstract void show();

 The above method show() is an abstract method as

it doesn’t have body and its declaration should end with semicolon(;).

Learning JAVA in a Magical Way 52

Inheritance By: H. Ateeq Ahmed

Example Program

//program to show the use of abstract class

abstract class Marks

{

int tot=100;

 abstract void internal(); // abstract methods

 abstract void external();

 void total() // concrete method

 {

 System.out.println("Total Marks:"+tot);

 }

}

class Detail extends Marks

{

 void internal()

 {

 System.out.println("Int:30 marks");

 }

 void external()

 {

 System.out.println("Ext:70 marks");

 }

}

class Abstract1

{

public static void main(String z[])

{

Detail d=new Detail();

d.internal();

d.external();

d.total();

}

}

Expected Output

Int:30 marks

Ext:70 marks

Total Marks:100

Learning JAVA in a Magical Way 53

Packages and Interfaces By: H. Ateeq Ahmed

UNIT-IV

Packages

“A Package is a collection of classes which provides high level of access protection and

name space management.”

 Java provides a mechanism for partitioning the class name space into more

manageable chunks. This mechanism is the package.

 Packages are stored in a hierarchical manner and are manually imported into new

class definitions.

 For example, a package allows you to create a class named A, which you can store in

your own package without concern that it will collide with some other class named A

stored elsewhere.

 Thus package is both a naming and a visibility control mechanism.

 We can define classes inside a package that are not accessible by code outside that

package.

Defining a Package

 To create a package is quite easy: simply include a package command as the first

statement in a Java source file.

 Any classes declared within that file will belong to the specified package.

 The package statement defines a name space in which classes are stored.

 If we omit the package statement, the class names are put into the default package,

which has no name.

The general form of the package statement is as follows

package nameofpackage;

Example

package pack1;

 The package statement simply specifies to which package the classes defined in a file

belong.

 Java uses file system directories to store packages.

 For example, the .class files for any classes you declare to be part of pack1 must be

stored in a directory called pack1.

 Package name is case sensitive, and the directory name must match the package name

exactly.

Learning JAVA in a Magical Way 54

Packages and Interfaces By: H. Ateeq Ahmed

Java also allows us to create a hierarchy of packages.

To do so, simply separate each package name from the one above it by use of a period(.)

The general form of a multileveled package statement is shown below.

package pack1.pack2.pack3;

where pack3 is a sub package of pack2 which is a sub package of pack1.

Example

package pack1;

public class A

{

 public void showA()

 {

 System.out.println(“showA() method.”);

 }

}

 The class that is to be stored in the package must be declared as

public because if we want to access it from outside the class.

Importing Packages

Java provides import statement to access individual or all the classes belonging to a package.

In a Java source file, import statements occur immediately following the package

statement (if it exists) and before any class definitions.

The general form of the import statement is as follows

import packagename.classname;

Example

import pack1.pack2.A;

 Here, pack1 is the name of a top-level package, and pack2 is the name of a

subordinate package inside the outer package separated by a dot (.).

 There is no practical limit on the depth of a package hierarchy, except that imposed by

the file system.

 Finally, you specify either an explicit classname or a star (*), which indicates that the

Java compiler should import the entire package.

Learning JAVA in a Magical Way 55

Packages and Interfaces By: H. Ateeq Ahmed

Example Program

// program to show how to define and access the package

package pack1; // defining a package

public class A

{

 public void show()

 {

 System.out.println(“show() method.”);

 }

}

import pack1.A; // accessing a package

class Package1

{

public static void main(String z[])

{

A ob=new A();

ob.show();

}

}

A.java

Package1.java

Learning JAVA in a Magical Way 56

Packages and Interfaces By: H. Ateeq Ahmed

Understanding CLASSPATH

Before an example that uses a package is presented, a brief discussion of the

CLASSPATH environmental variable is required. While packages solve many problems

from an access control and name-space-collision perspective, they cause some curious

difficulties when you compile and run programs. This is because the specific location that the

Java compiler will consider as the root of any package hierarchy is controlled by

CLASSPATH.

Until now, you have been storing all of your classes in the same, unnamed default

package. Doing so allowed you to simply compile the source code and run the Java

interpreter on the result by naming the class on the command line. This worked because the

default current working directory (.) is usually in the CLASSPATH environmental variable

defined for the Java run-time system, by default. However, things are not so easy when

packages are involved. Here's why.

Assume that you create a class called PackTest in a package called test. Since your

directory structure must match your packages, you create a directory called test and put

PackTest.java inside that directory. You then make test the current directory and compile

PackTest.java. This results in PackTest.class being stored in the test directory, as it should

be. When you try to run PackTest, though, the Java interpreter reports an error message

similar to "can't find class PackTest." This is because the class is now stored in a package

called test. You can no longer refer to it simply as PackTest. You must refer to the class by

enumerating its package hierarchy, separating the packages with dots. This class must now be

called test.PackTest. However, if you try to use test.PackTest, you will still receive an error

message similar to "can't find class test/PackTest."

The reason you still receive an error message is hidden in your CLASSPATH

variable. Remember, CLASSPATH sets the top of the class hierarchy. The problem is that

there's no test directory in the current working directory, because you are in the test

directory, itself.

You have two choices at this point: change directories up one level and try java

test.PackTest, or add the top of your development class hierarchy to the CLASSPATH

environmental variable. Then you will be able to use java test.PackTest from any directory,

and Java will find the right .class file. For example, if you are working on your source code

in a directory called C:\\myjava, then set your CLASSPATH to .;C:\myjava;C:\java\classes.

Learning JAVA in a Magical Way 57

Packages and Interfaces By: H. Ateeq Ahmed

Interfaces

 Using the keyword interface, you can fully abstract a class from its implementation.

 That is, using interface, you can specify what a class must do, but not how it does it.

 Interfaces are syntactically similar to classes, But they contain final variables, and

their methods are declared without any body.

 Once an interface is defined, any number of classes can implement it.

 Also, one class can implement any number of interfaces.

 To implement an interface, a class must create the complete set of methods defined by

the interface.

 However, each class is free to determine the details of its own implementation.

 By providing the interface keyword, Java allows you to fully utilize the "one

interface, multiple methods" aspect of polymorphism.

 Multiple Inheritance is achieved in java through interfaces.

Defining an Interface

An interface is defined by using a keyword “interface”.

Syntax

access interfacename

 {

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

// ...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

Explanation

 Here, access is either public or no modifier.

 Here name is the name of the interface.

 Notice that the methods which are declared have no bodies. They end with a

semicolon

after the parameter list. They are, essentially, abstract methods.

 Each class that includes an interface must implement all of the methods.

 Variables can be declared inside the interface declarations.

 They are implicitly final and static, meaning they cannot be changed by the

implementing class. They must also be initialized with a constant value.

 All methods and variables are implicitly public if the interface, itself, is declared as

public.

Learning JAVA in a Magical Way 58

Packages and Interfaces By: H. Ateeq Ahmed

Example

interface Marks

{

void internal();

void external();

}

 The above interface named “Marks” contain two abstract methods

which are automatically public.

Implementing Interface

 Once an interface has been defined, one or more classes can implement that interface.

 To implement an interface, include the implements keyword in a class definition, and

then implement the methods defined by the interface.

Syntax

access class classname [extends superclass] implements [interface1, interface2,….]

{

//class body

}

Explanation

 Here, access is a modifier.

 If a class implements more than one interface, the interfaces are separated with a

comma.

 The methods that implement an interface must be declared public.

 Also, the type signature of the implementing method must match exactly the type

signature.

 specified in the interface definition.

Example Program

// program to show the use of interface

interface Marks

{

int tot=100;

void internal();

void external();

}

class Detail implements Marks

{

 public void internal()

 {

 System.out.println("Int Marks=30");

 }

Learning JAVA in a Magical Way 59

Packages and Interfaces By: H. Ateeq Ahmed

 public void external()

 {

 System.out.println("Ext Marks=70");

 }

 void total()

 {

 System.out.println("Total Marks="+tot);

 }

}

class Interface1

{

public static void main(String z[])

{

Detail d=new Detail();

d.internal();

d.external();

d.total();

}

}

Expected Output

Int Marks=30

Ext Marks=70

Total Marks=100

Applying Interfaces

 To understand the power of interfaces, let's look at a more practical example. Earlier

we have developed a class called Stack that implemented a simple fixed-size stack.

 However, there are many ways to implement a stack. For example, the stack can be of

a fixed size or it can be "growable."

 The stack can also be held in an array, a linked list, a binary tree, and so on. No matter

how the stack is implemented, the interface to the stack remains the same.

 That is, the methods push() and pop() define the interface to the stack independently

of the details of the implementation.

 Because the interface to a stack is separate from its implementation, it is easy to

define a stack interface, leaving it to each implementation to define the specifics.

Learning JAVA in a Magical Way 60

Packages and Interfaces By: H. Ateeq Ahmed

Example Program

Learning JAVA in a Magical Way 61

Packages and Interfaces By: H. Ateeq Ahmed

Variables in Interfaces

 The variables in the interfaces are automatically declared as static and final.

 The final modifier ensures the value assigned to the interface variable is a true

constant that cannot be re-assigned by program code.

 It means that their values cannot be changed by the classes that implement the

interface.

 We can use interfaces to import shared constants into multiple classes by simply

declaring an interface that contains variables which are initialized to the desired

values.

 When you include that interface in a class (that is, when you "implement" the

interface),

all of those variable names will be in scope as constants.

Example Program

// variables in interface

interface Constants

{

int internal=30; // all three variables are final by default

int external=70;

int total=100;

}

class Marks implements Constants

{

void display()

{

 //internal=40; // creates an error becoz “internal” is a final variable

System.out.println("Internal Marks="+internal);

System.out.println("External Marks="+external);

System.out.println("Total Marks="+total);

}

}

Learning JAVA in a Magical Way 62

Packages and Interfaces By: H. Ateeq Ahmed

class Interface2

{

public static void main(String z[])

{

Marks m=new Marks();

m.display();

}

}

Expected Output

Internal Marks=30

External Marks=70

Total Marks=100

Extending Interfaces

 Like classes, interfaces can also be extended by using “extends” keyword.

 When one interface extends another interface, the properties one interface is inherited

to another.

 The class that implements the sub interface should provide definitions to all the

methods of both the interfaces.

Syntax

interface Interface1

{

}

interface Interface2 extends Interface1

{

}

Example Program

//extending interfaces

interface A

{

void show1();

void show2();

}

interface B extends A

{

void show3(); // Now interface „B‟ contains 3 abstract methods.

}

class Test implements B

{

 public void show1()

Learning JAVA in a Magical Way 63

Packages and Interfaces By: H. Ateeq Ahmed

 {

 System.out.println("show1() method");

 }

 public void show2()

 {

 System.out.println("show2() method");

 }

 public void show3()

 {

 System.out.println("show3() method");

 }

}

class Interface3

{

public static void main(String z[])

{

Test t=new Test();

t.show1();

t.show2();

t.show3();

}

}

Expected Output

show1() method

show2() method

show3() method

Exploring Packages

java.io
 Let us now explore java.io package.

 As all programmers learn early on, most programs cannot accomplish their goals

without accessing external data.

 Data is retrieved from an input source.

 The results of a program are sent to an output destination.

 In Java, these sources or destinations are defined very broadly. For example, a

network connection, memory buffer, or disk file can be manipulated by the Java I/O

classes.

 Although physically different, these devices are all handled by the same abstraction:

the stream. A stream is a logical entity that either produces or consumes information.

 A stream is linked to a physical device by the Java I/O system.

 All streams behave in the same manner, even if the actual physical devices they are

linked to differ.

Learning JAVA in a Magical Way 64

Packages and Interfaces By: H. Ateeq Ahmed

 The following are some of the classes and interfaces present in

java.io. package

BufferedReader

BufferedWriter

BufferedInputStream

BufferedOutputStream etc.

BufferedReader

BufferedReader improves performance by buffering input.

It has two constructors:

BufferedReader(Reader inputStream)

BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the

second, the size of the buffer is passed in bufSize.

Example Program

import java.io.*;

class Sample

{

public static void main(String z[]) throws IOException

{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));

int a,b,c;

System.out.println("Enter any two numbers");

a=Integer.parseInt(x.readLine());

b=Integer.parseInt(x.readLine());

c=a+b;

System.out.println("Sum="+c);

}

}

Expected Output

Enter any two numbers

20

10

Sum=30

java.util

The java.util package contains classes that deal with collections, events, date and time, and

various helpful utilities.

Learning JAVA in a Magical Way 65

Exception Handling and Multithreading By: H. Ateeq Ahmed

UNIT-V
Exception Handling

An exception is an abnormal condition that arises in a code sequence at run time.

In other words , an exception is a runtime error that indicates that some problem has occurred during program

execution.

In computer languages that do not support exception handling, errors must be checked and handled manually—

typically through the use of error codes, and so on.

Java's exception handling avoids these problems and, in the process, brings run-time error management into the

object-oriented world.

 Java exception handling is managed via five keywords: try, catch, throw, throws, and finally.

 Briefly, here is how they work. Program statements that you want to monitor for exceptions are contained

within a try block.

 If an exception occurs within the try block, it is thrown.

 Your code can catch this exception (using catch) and handle it in some rational manner.

 System-generated exceptions are automatically thrown by the Java runtime system.

 To manually throw an exception, use the keyword throw.

 Any exception that is thrown out of a method must be specified as such by a throws clause.

 Any code that absolutely must be executed before a method returns is put in a finally block.

General form

try

{

// block of code to monitor for errors

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType2

}

// ...

finally

{

// block of code to be executed before try block ends

}

Here, ExceptionType is the type of exception that has occurred.

All exception types are subclasses of the built-in class Throwable.

Thus, Throwable is at the top of the exception class hierarchy. Immediately below Throwable are two subclasses

that partition exceptions into two distinct branches.

One branch is headed by Exception. This class is used for exceptional conditions that user programs should catch.

This is also the class that you will subclass to create your own custom exception types.

There is an important subclass of Exception, called RuntimeException.

Exceptions of this type are automatically defined for the programs that you write and include things such as division

by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to be caught under normal

circumstances by your program.

 Exceptions of type Error are used by the Java run-time system to indicate errors having to do with the run-time

environment, itself.

Stack overflow is an example of such an error.

Learning JAVA in a Magical Way 66

Exception Handling and Multithreading By: H. Ateeq Ahmed

Using try and catch

Although the default exception handler provided by the Java run-time system is useful for debugging, you will

usually want to handle an exception yourself. Doing so provides two benefits.

(1) First, it allows you to fix the error.

(2) Second, it prevents the program from automatically terminating.

To guard against and handle a run-time error, simply enclose the code that you want to monitor inside a try block.

Immediately following the try block, includes a catch clause that specifies the exception type that you wish to catch.

To illustrate how easily this can be done, the following program includes a try block and a catch clause which

processes the ArithmeticException generated by the division-by-zero error:

Example Program

//use of try and catch

class Prog1

{

public static void main(String z[])

{

int a,b,c;

a=10;

b=0;

try

{

c=a/b;

System.out.println("Result="+c);

}

catch(ArithmeticException e)

{

System.out.println("Denominator should not be zero.");

}

System.out.println("After catch block.");

}

}

Expected Output

Denominator should not be zero.

After catch block.

Explanation

 Notice that the call to println() inside the try block is never executed. Once an exception is thrown, program

control transfers out of the try block into the catch block.

 Put differently, catch is not "called," so execution never "returns" to the try block from a catch. Thus, the

line " After catch block." is not displayed.

 Once the catch statement has executed, program control continues with the next line in the program

following the entire try/catch mechanism.

Multiple catch Clauses

 In some cases, more than one exception could be raised by a single piece of code.

 To handle this type of situation, you can specify two or more catch clauses, each catching a

 different type of exception.

 When an exception is thrown, each catch statement is inspected in order, and the first one whose type

matches that of the exception is executed.

Learning JAVA in a Magical Way 67

Exception Handling and Multithreading By: H. Ateeq Ahmed

 After one catch statement executes, the others are bypassed, and execution continues after the try/catch

block.

Example Program

//try with multiple catch blocks

class Prog2

{

public static void main(String z[])

{

int a,b,c;

try

{

a=Integer.parseInt(z[0]);

b=Integer.parseInt(z[1]);

c=a/b;

System.out.println("Result="+c);

}

catch(ArithmeticException e)

{

System.out.println("Denominator should not be zero.");

}

catch(NumberFormatException e)

{

System.out.println("Enter only numerical values");

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Enter only two numbers");

}

System.out.println("After catch block.");

}

}

Expected Output

C:\>java Prog2 20 two

Enter only numerical values

After catch block.

Nested try Statements

 The try statement can be nested. That is, a try statement can be inside the block of another try.

 Each time a try statement is entered, the context of that exception is pushed on the stack.

 If an inner try statement does not have a catch handler for a particular exception, the stack is unwound and

the next try statement's catch handlers are inspected for a match.

Example Program

//nested try blocks

Learning JAVA in a Magical Way 68

Exception Handling and Multithreading By: H. Ateeq Ahmed

import java.io.*;

class Prog3

{

public static void main(String z[]) throws IOException

{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));

int a,b,c;

try

{

System.out.println("Enter any two numbers:");

a=Integer.parseInt(x.readLine());

b=Integer.parseInt(x.readLine());

 try

 {

 c=a/b;

 System.out.println("Result="+c);

 }

 catch(ArithmeticException e)

 {

 System.out.println("Denominator should not be zero.");

 }

}

catch(NumberFormatException e)

{

System.out.println("Enter only numerical values");

}

System.out.println("After catch block.");

}

}

throw

So far, you have only been catching exceptions that are thrown by the Java run-time system.

However, it is possible for your program to throw an exception explicitly, using the throw statement.

The general form of throw is shown here:

throw ThrowableInstance;

Example Program

//use of throw

import java.io.*;

class Prog4

{

public static void main(String z[]) throws IOException

{

BufferedReader x=new BufferedReader(new InputStreamReader(System.in));

int a,b,c;

try

{

System.out.println("Enter any two numbers:");

a=Integer.parseInt(x.readLine());

b=Integer.parseInt(x.readLine());

c=a/b;

System.out.println("Result="+c);

throw new ArithmeticException(); // manually throwing an exception

Learning JAVA in a Magical Way 69

Exception Handling and Multithreading By: H. Ateeq Ahmed

}

 catch(ArithmeticException e)

 {

 System.out.println("Denominator should not be zero.");

 }

System.out.println("After catch block.");

}

}

Expected Output

Enter any two numbers:

20

10

Result=2

Denominator should not be zero.

After catch block.

throws

 If a method is capable of causing an exception that it does not handle, it must specify this behavior so that

callers of the method can guard themselves against that exception.

 You do this by including a throws clause in the method's declaration.

 A throws clause lists the types of exceptions that a method might throw.

 This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their

subclasses.

 All other exceptions that a method can throw must be declared in the throws clause. If they are not, a

compile-time error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Example Program

//use of throws

class Prog5

{

static int res;

 static void display(int x,int y) throws NoSuchMethodException

 {

 res=x/y;

 System.out.println("Result="+res);

 }

public static void main(String z[])

{

 try

 {

 display(20,0);

 }

Learning JAVA in a Magical Way 70

Exception Handling and Multithreading By: H. Ateeq Ahmed

 catch(NoSuchMethodException e)

 {

 System.out.println("Not Zero!");

 }

}

}

finally

 finally creates a block of code that will be executed after a try/catch block has completed and before the

code following the try/catch block.

 The finally block will execute whether or not an exception is thrown.

 If an exception is thrown, the finally block will execute even if no catch statement matches the exception.

 Any time a method is about to return to the caller from inside a try/catch block, via an uncaught exception or

an explicit return statement, the finally clause is also executed just before the method returns.

 This can be useful for closing file handles and freeing up any other resources that might have been allocated

at the beginning of a method with the intent of disposing of them before returning. The finally clause is

optional.

 However, each try statement requires at least one catch or a finally clause.

Example Program

// use of finally

class Prog6

{

static int res;

 static void div(int x,int y)

 {

 try

 {

 res=x/y;

 System.out.println("Result="+res);

 }

 finally //finally block is executed first than catch block

 {

 System.out.println("Finally block!");

 }

 }

public static void main(String z[])

{

try

{

div(20,0);

}

catch(ArithmeticException e)

{

System.out.println("Not Zero!");

}

}

}

Expected Output

Finally block!

Not Zero!

Java's Built-in Exceptions

Learning JAVA in a Magical Way 71

Exception Handling and Multithreading By: H. Ateeq Ahmed

Inside the standard package java.lang, Java defines several exception classes. A few have been used by the

preceding examples.

Hence Exceptions are generally classified into the following two categories.

(i)Unchecked exceptions

(ii)Checked exceptions.

(i) Unchecked exceptions

 The most general of these exceptions are subclasses of the standard type RuntimeException. Since

java.lang is implicitly imported into all Java programs, most exceptions derived from RuntimeException

are automatically available.

 Furthermore, they need not be included in any method's throws list.

 In the language of Java, these are called unchecked exceptions because the compiler does not check to see if a

method handles or throws these exceptions.

 The unchecked exceptions defined in java.lang are listed in Table 10-1.

(ii) Checked exceptions

 Table 10-2 lists those exceptions defined by java.lang that must be included in a method's throws list if that

method can generate one of these exceptions and does not handle it itself.

 These are called checked exceptions.

Learning JAVA in a Magical Way 72

Exception Handling and Multithreading By: H. Ateeq Ahmed

Learning JAVA in a Magical Way 73

Exception Handling and Multithreading By: H. Ateeq Ahmed

Creating Your Own Exception Subclasses

 Although Java's built-in exceptions handle most common errors, you will probably want to create your own

exception types to handle situations specific to your applications.

 This is quite easy to do: just define a subclass of Exception (which is, of course, a subclass of Throwable).

 Your subclasses don't need to actually implement anything—it is their existence in the type system that

allows you to use them as exceptions.

 The Exception class does not define any methods of its own. It does, of course, inherit

those methods provided by Throwable.

 Thus, all exceptions, including those that you create, have the methods defined by Throwable available to

them.

Example Program

class Retire extends Exception

{

int age;

 Retire(int age)

 {

 this.age=age;

 }

 public String toString()

 {

 return "Age should be <=58 years "+age+" is wrong age";

 }

}

class UserExcep

{

public static void main(String z[])

{

int age=Integer.parseInt(z[0]);

int sal;

try

{

if(age>58) throw new Retire(age);

if(age<=30)

sal=5000;

else if(age<=40)

sal=10000;

else

sal=15000;

Learning JAVA in a Magical Way 74

Exception Handling and Multithreading By: H. Ateeq Ahmed

System.out.println("Salary:"+sal);

}

catch(Retire e)

{

System.out.println(e);

}

}

}

Expected Output

C:\>java Sample 59

Age should be <=58 years 59 is wrong age

Multithreaded Programming

Unlike most other computer languages, Java provides built-in support for multithreaded programming.

A multithreaded program contains two or more parts that can run concurrently.

Each part of such a program is called a thread, and each thread defines a separate path of execution.

Thus, multithreading is a specialized form of multitasking.

There are two distinct types of multitasking process-based and thread-based.

It is important to understand the difference between the two.

Differences between process based and thread based multitasking

Process based multitasking

 For most readers, process-based multitasking is the more familiar form.

 A process is, in essence, a program that is executing.

 Thus, process-based multitasking is the feature that allows your computer to run two or more programs

concurrently.

 For example, process-based multitasking enables you to run the Java compiler at the same time that you are

using a text editor.

 In process-based multitasking, a program is the smallest unit of code that can be dispatched by the scheduler.

 Processes are heavyweight tasks that require their own separate address spaces.

 Interprocess communication is expensive and limited.

 Context switching from one process to another is also costly.

Thread based multitasking

 In a thread-based multitasking environment, the thread is the smallest unit of dispatchable code.

 This means that a single program can perform two or more tasks simultaneously. For instance, a text editor

can format text at the same time that it is printing, as long as these two actions are being performed by two

separate threads.

 Thus, process-based multitasking deals with the "big picture," and thread-based multitasking handles the

details.

 Multitasking threads require less overhead than multitasking processes.

 Threads, on the other hand, are lightweight.

 They share the same address space and cooperatively share the same heavyweight process.

 Interthread communication is inexpensive, and context switching from one thread to the next is low cost.

 While Java programs make use of process-based multitasking environments,

process-based multitasking is not under the control of Java.

However, multithreaded multitasking is under the control of java.

Learning JAVA in a Magical Way 75

Exception Handling and Multithreading By: H. Ateeq Ahmed

Thread life cycle:

During its life cycle, every thread undergoes the following five states.

(1) Born state state

(2) Runnable state

(3) Running state

(4) Blocked state

(5) Dead state

Let us now discuss each of them briefly.

(1) Born State:

A thread is said to be in born state when a new thread object is created.

During this state, a thread doesn’t perform any work.

(2) Runnable State:

A thread is said to be in runnable state if it is ready for execution and is waiting for the availability of the

processor in a queue.

All the threads waiting in the queue have their priorities.

The thread with the highest priority will go to the running state first.

(3) Running State:

A thread is said to be in running state if it is under the execution of the processor.

(4) Blocked State:

A thread is said to be in blocked state, if it is avoided from entering from runnable to running state using

suspend(), sleep() and wait() methods.

(5) Dead State:

It is the final state in the life cycle of the thread.

A thread may die in the following two ways.

(i) Natural death: After completion of execution, the thread generally dies.

(ii) Premature death: A thread can be killed before the completion of its execution.

The Main Thread
When a Java program starts up, one thread begins running immediately.

This is usually called the main thread of your program, because it is the one that is executed when your program

begins.

The main thread is important for two reasons:

• It is the thread from which other "child" threads will be created.

• It must be the last thread to finish execution.

When the main thread stops, your program terminates.

Example Program

class Example1

{

public static void main(String z[])

{

System.out.println("Main thread created.");

Thread t=Thread.currentThread();

System.out.println(t);

t.setName("New Thread");

System.out.println("After name changed:"+t);

}

Learning JAVA in a Magical Way 76

Exception Handling and Multithreading By: H. Ateeq Ahmed

}

Expected Output

Main thread created.

Thread[main,5,main]

After name changed:Thread[New Thread,5,main]

Creating a Thread

Threads can be created in one of the following two ways.

(1) By extending Thread class

(2) By implementing Runnable interface

Let us now discuss these two methods briefly.

(1) Extending Thread

 The first way to create a thread is to create a new class that extends Thread, and then to create an instance of

that class.

 The extending class must override the run() method, which is the entry point for the new thread.

 It must also call start() to begin execution of the new thread.

Example Program

//By extending "Thread" class

class User extends Thread

{

String name;

 User(String s)

 {

 super(s);

 System.out.println("Child thread created!");

 name=s;

 start();

 }

 public void run()

 {

 try

 {

 for(int i=101;i<=105;i++)

 {

 System.out.println(name+":"+i);

 sleep(500);

 }

 }

catch(InterruptedException e)

 {

 System.out.println("Child thread interrupted!");

 }

 }

}

class Thread1

{

public static void main(String z[])

{

System.out.println("Main thread created!");

Learning JAVA in a Magical Way 77

Exception Handling and Multithreading By: H. Ateeq Ahmed

User u=new User("Child1");

try

{

for(int i=1;i<=5;i++)

{

System.out.println("Main:"+i);

Thread.sleep(1000);

}

}

catch(InterruptedException e)

{

System.out.println("Main thread Interrupted!");

}

}

}

Expected Output

Main thread created!

Child thread created!

Main:1

Child1:101

Child1:102

Main:2

Child1:103

Child1:104

Main:3

Child1:105

Main:4

Main:5

(2) Implementing Runnable

 The easiest way to create a thread is to create a class that implements the Runnable interface.

 Runnable abstracts a unit of executable code.

 You can construct a thread on any object that implements Runnable.

 To implement Runnable, a class need only implement a single method called run(), which is declared like

this:

public void run()

 Inside run(), you will define the code that constitutes the new thread.

 It is important to understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can.

 The only difference is that run() establishes the entry point for another, concurrent thread of execution

within your program.

Example Program

//By implementing "Runnable" interface

class User implements Runnable

{

Thread t;

String name;

 User(String s)

 {

 t=new Thread(this,s);

Learning JAVA in a Magical Way 78

Exception Handling and Multithreading By: H. Ateeq Ahmed

 System.out.println("Child thread created!");

 name=s;

 t.start();

 }

 public void run()

 {

 try

 {

 for(int i=101;i<=105;i++)

 {

 System.out.println(name+":"+i);

 t.sleep(500);

 }

 }

catch(InterruptedException e)

 {

 System.out.println("Child thread interrupted!");

 }

 }

}

class Thread2

{

public static void main(String z[])

{

System.out.println("Main thread created!");

User u=new User("Child1");

try

{

for(int i=1;i<=5;i++)

{

System.out.println("Main:"+i);

Thread.sleep(1000);

}

}

catch(InterruptedException e)

{

System.out.println("Main thread Interrupted!");

}

}

}

Expected Output

Main thread created!

Child thread created!

Main:1

Child1:101

Child1:102

Main:2

Child1:103

Child1:104

Main:3

Learning JAVA in a Magical Way 79

Exception Handling and Multithreading By: H. Ateeq Ahmed

Child1:105

Main:4

Main:5

Creating Multiple Threads

So far, you have been using only two threads: the main thread and one child thread.

However, your program can spawn as many threads as it needs. For example, the following program creates three

child threads:

Example Program

//Creating multiple threads

class User extends Thread

{

String name;

 User(String s)

 {

 super(s);

 System.out.println("Child thread created!");

 name=s;

 start();

 }

 public void run()

 {

 try

 {

 for(int i=101;i<=105;i++)

 {

 System.out.println(name+":"+i);

 sleep(1000);

 }

 }

 catch(InterruptedException e)

 {

 System.out.println("Child thread interrupted!");

 }

 }

}

class Thread3

{

public static void main(String z[])

{

User u1=new User("Child1");

User u2=new User("Child2");

User u3=new User("Child3");

}

}

Example Program

Child thread created!

Child thread created!

Child1:101

Child thread created!

Child2:101

Child3:101

Child1:102

Learning JAVA in a Magical Way 80

Exception Handling and Multithreading By: H. Ateeq Ahmed

Child3:102

Child2:102

Child3:103

Child1:103

Child2:103

Child3:104

Child1:104

Child2:104

Child3:105

Child2:105

Child1:105

Thread Priorities

 Thread priorities are used by the thread scheduler to decide when each thread should be

allowed to run.

 In theory, higher-priority threads get more CPU time than lower-priority threads and threads of equal priority

should get equal access to the CPU.

 To set a thread's priority, use the setPriority() method, which is a member of Thread.

Its general form is given below

final void setPriority(int level)

 Here, level specifies the new priority setting for the calling thread.

 The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these

values are 1 and 10, respectively.

 To return a thread to default priority, specify NORM_PRIORITY, which is currently 5.

 These priorities are defined as final variables within Thread.

Thread Synchronization

 When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time.

 The process by which this is achieved is called synchronization.

 Key to synchronization is the concept of the monitor (also called a semaphore).

 A monitor is an object that is used as a mutually exclusive lock, or mutex.

 Only one thread can own a monitor at a given time.

 When a thread acquires a lock, it is said to have entered the monitor.

 All other threads attempting to enter the locked monitor will be suspended until the first thread exits the

monitor.

 These other threads are said to be waiting for the monitor.

 A thread that owns a monitor can reenter the same monitor if it so desires.

Using Synchronized Methods

 Synchronization is easy in Java, because all objects have their own implicit monitor associated with them.

 To enter an object's monitor, just call a method that has been modified with the synchronized keyword.

 While a thread is inside a synchronized method, all other threads that try to call it (or any other synchronized

method) on the same instance have to wait.

 To exit the monitor and relinquish control of the object to the next waiting thread, the owner of the monitor

simply returns from the synchronized method.

Example Program

//Program on thread synchronization

class Message

{

 synchronized void show(String s)

Learning JAVA in a Magical Way 81

Exception Handling and Multithreading By: H. Ateeq Ahmed

 {

 System.out.print("["+s);

 try

 {

 Thread.sleep(1000);

 }

 catch(InterruptedException e)

 {

 }

 System.out.println("]");

 }

}

class User implements Runnable

{

Thread t;

String s;

Message m;

 User(Message m,String s)

 {

 t=new Thread(this);

 this.m=m;

 this.s=s;

 t.start();

 }

 public void run()

 {

 m.show(s);

 }

}

class Thread4

{

public static void main(String z[])

{

Message m=new Message();

User u1=new User(m,"Hello");

User u2=new User(m,"Synchronized");

User u3=new User(m,"World");

}

}

Expected Output

[Hello]

[Synchronized]

[World]
